Sensor device structures based on thick-film ceramic materials

Author(s):  
H. I. Klym ◽  
I. V. Hadzaman ◽  
O. V. Shpotyuk
2016 ◽  
Vol 776 ◽  
pp. 012061 ◽  
Author(s):  
I D. P. Hermida ◽  
G. Wiranto ◽  
Hiskia ◽  
R. Nopriyanti

2015 ◽  
Vol 27 (4) ◽  
pp. 157-163
Author(s):  
Jakub Somer ◽  
Michal Štekovič ◽  
František Urban ◽  
Josef Šandera ◽  
Ivan Szendiuch

Purpose – The purpose of this paper is to focus on a description of reliable bonding technique of zero-shrink low-temperature co-fired ceramic (LTCC) and alumina ceramics. LTCC is widely used for manufacturing electrical systems in 3D configuration. LTCC substrates were so far bonded with alumina ceramics using additional adhesive layers with subsequent firing or curing cycle. With the advent of the zero-shrink LTCC substrates, it is now possible to bond unfired substrates with other fired substrates, for example fired LTCC or alumina substrates. Alumina substrate in combination with LTCC brings advantages of good thermal conductivity for usage in heating elements or packaging. Design/methodology/approach – The test structure contains a thick-film pattern for verification of the compatibility of the bonding process. We have used two methods for bonding the substrates: cold chemical lamination (CCL) and thermo compression method, using a dielectric thick-film paste as the adhesive. Optical microscopy, scanning electron microscopy and electric testing of the screen-printed patterns were used for verification of the bonding quality. Findings – The thermo-compression method gave poor results in comparison with the CCL method. The best quality of lamination was achieved at room temperature combined with low pressure for both types of bonding materials. In addition, a possibility of using this bonding method for sensor fabrication was investigated. The ceramic pressure sensor samples with a cavity were created. Originality/value – The possibility of bonding two different ceramic materials was investigated. A new approach to ceramic bonding showed promising results with possible use in sensors.


2014 ◽  
Vol 54 (12) ◽  
pp. 2843-2848 ◽  
Author(s):  
H. Klym ◽  
V. Balitska ◽  
O. Shpotyuk ◽  
I. Hadzaman

2002 ◽  
Vol 74 (11) ◽  
pp. 2083-2096 ◽  
Author(s):  
H. Altenburg ◽  
J. Plewa ◽  
G. Plesch ◽  
O. Shpotyuk

The use of thick films becomes more and more important in particular for electronic and microelectronic applications. The term “thick film ” does not relate so much to the thickness of the film but more to the kind of deposition. Thick films are made by low-priced processes such as doctor (dr) blading, screen-printing, or spraying methods, etc. The preparation of thick films of ceramic material by these methods generally implies a processing sequence of the following steps: preparation of the oxide powders; preparation of pastes and slurries; painting/printing, etc.of the pastes onto a suitable substrate; drying at low temperature; and sintering at high temperature to get a consolidated layer. These technologies and the fabricated thick films of thermoresistive and superconducting materials will be discussed.


Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


Sign in / Sign up

Export Citation Format

Share Document