Laser Scribe Graphene (LSG) Fabrication Method for Microwave Circuit Applications

Author(s):  
Nathaniel D'Agati ◽  
Josko Zec
2015 ◽  
Vol 1105 ◽  
pp. 51-55 ◽  
Author(s):  
K.M. Gupta ◽  
Kishor Kalauni

Bhimal fibres are quite a newer kind of bio-degradable fibres. They have never been heard before in literatures from the view point of their utility as engineering material. These fibres have been utilized for investigation of their properties. Characterization of this fibre is essential to determine its properties for further use as reinforcing fibre in polymeric, bio-degradable and other kinds of matrix. With this objective, the fabrication method and other mechanical properties of Bhimal-reinforced-PVA biocomposite have been discussed. The stress-strain curves and load-deflection characteristics are obtained. The tensile, compressive, flexure and impact strengths have been calculated. The results are shown in tables and graphs. The results obtained are compared with other existing natural fibre biocomposites. From the observations, it has been concluded that the tensile strength of Bhimal-reinforced-PVA biocomposite is higher than other natural fibre composites. Hence these can be used as reinforcement to produce much lighter weight biocomposites.


2021 ◽  
Vol 882 ◽  
pp. 114990
Author(s):  
Yu Tian ◽  
Jie Zhao ◽  
Dongxue Han ◽  
Shifan Zhao ◽  
Yuanwei Zhang ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhicheng Xiao ◽  
Andrea Alù

Abstract Fano resonances feature an asymmetric lineshape with controllable linewidth, stemming from the interplay between bright and dark resonances. They provide efficient opportunities to shape the scattering lineshape, but they usually lack flexibility and tunability and are hindered by loss in passive systems. Here, we explore a hybrid parity-time (PT) and anti-parity-time (APT) symmetric system supporting unitary scattering features with highly tunable Fano resonances. The PT-APT-symmetric system can be envisioned in nanophotonic and microwave circuit implementations, allowing for real-time control of the scattering lineshape and its underlying singularities. Our study shows the opportunities enabled by non-Hermitian platforms to control scattering lineshapes for a plethora of photonic, electronic, and quantum systems, with potential for high-resolution imaging, switching, sensing, and multiplexing.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1264 ◽  
Author(s):  
Daehan Kim ◽  
Sung-Hwan Kim ◽  
Joong Yull Park

Polydimethylsiloxane (PDMS) membranes are used in various applications, such as microvalves, micropumps, microlenses, and cell culture substrates, with various thicknesses from microscale to nanoscale. In this study, we propose a simple fabrication method for PDMS membranes on a water surface, referred to as the floating-on-water (FoW) method. FoW can be used to easily fabricate PDMS membranes with thicknesses of a few micrometers (minimum 3 μm) without special equipment. In addition, as the membrane is fabricated on the water surface, it can be easily handled without damage. In addition, alternative membrane structures were demonstrated, such as membrane-on-pins and droplet-shaped membranes. FoW can be widely used in various applications that require PDMS membranes with microscale thicknesses.


Cast Metals ◽  
1992 ◽  
Vol 5 (2) ◽  
pp. 95-102 ◽  
Author(s):  
H. Soda ◽  
A. Ichinose ◽  
G. Motoyasu ◽  
A. Ohno ◽  
A. Mclean
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document