Age of Information of Jackson Networks with Finite Buffer Size

Author(s):  
Josu Doncel ◽  
Mohamad Assaad
2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Andrzej Chydzinski ◽  
Blazej Adamczyk

We present an analysis of the number of losses, caused by the buffer overflows, in a finite-buffer queue with batch arrivals and autocorrelated interarrival times. Using the batch Markovian arrival process, the formulas for the average number of losses in a finite time interval and the stationary loss ratio are shown. In addition, several numerical examples are presented, including illustrations of the dependence of the number of losses on the average batch size, buffer size, system load, autocorrelation structure, and time.


1992 ◽  
Vol 6 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Masakiyo Miyazawa

We are concerned with a burst arrival single-server queue, where arrivals of cells in a burst are synchronized with a constant service time. The main concern is with the loss probability of cells for the queue with a finite buffer. We analyze an embedded Markov chain at departure instants of cells and get a kind of lumpability for its state space. Based on these results, this paper proposes a computation algorithm for its stationary distribution and the loss probability. Closed formulas are obtained for the first two moments of the numbers of cells and active bursts when the buffer size is infinite.


2005 ◽  
Vol 42 (01) ◽  
pp. 199-222 ◽  
Author(s):  
Yutaka Sakuma ◽  
Masakiyo Miyazawa

We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our interest is in the limit of the tail decay rate of the queue-length distribution of node 2 when the buffer size of node 1 goes to infinity, provided that the stability condition of the unlimited network is satisfied. We show that there can be three different cases for the limit. This generalizes some recent results obtained for the tandem Jackson network. Special cases and some numerical examples are also presented.


2007 ◽  
Vol 24 (04) ◽  
pp. 435-461 ◽  
Author(s):  
TOM VAN WOENSEL ◽  
NICO VANDAELE

In this paper, an overview of different analytic queueing models for traffic on road networks is presented. In the literature, it has been shown that queueing models can be used to adequately model uninterrupted traffic flows. This paper gives a broad review on this literature. Moreover, it is shown that the developed published methodologies (which are mainly single node oriented) can be extended towards queueing networks. First, an extension towards queueing networks with infinite buffer sizes is evaluated. Secondly, the assumption of infinite buffer sizes is dropped leading to queueing networks with finite buffer sizes. The impact of the buffer size when comparing the different queueing network methodologies is studied in detail. The paper ends with an analytical application tool to facilitate the optimal positioning of the counting points on a highway.


2000 ◽  
Vol 32 (1) ◽  
pp. 221-243 ◽  
Author(s):  
A. P. Zwart

We consider a fluid model similar to that of Kella and Whitt [32], but with a buffer having finite capacity K. The connections between the infinite buffer fluid model and the G/G/1 queue established by Kella and Whitt are extended to the finite buffer case: it is shown that the stationary distribution of the buffer content is related to the stationary distribution of the finite dam. We also derive a number of new results for the latter model. In particular, an asymptotic expansion for the loss fraction is given for the case of subexponential service times. The stationary buffer content distribution of the fluid model is also related to that of the corresponding model with infinite buffer size, by showing that the two corresponding probability measures are proportional on [0,K) if the silence periods are exponentially distributed. These results are applied to obtain large buffer asymptotics for the loss fraction and the mean buffer content when the fluid queue is fed by N On-Off sources with subexponential on-periods. The asymptotic results show a significant influence of heavy-tailed input characteristics on the performance of the fluid queue.


2003 ◽  
Vol 31 (1) ◽  
pp. 324-325 ◽  
Author(s):  
K. E. Avrachenkov ◽  
N. O. Vilchevsky ◽  
G. L. Shevlyakov

2005 ◽  
Vol 42 (3) ◽  
pp. 883-891 ◽  
Author(s):  
Ger Koole ◽  
Misja Nuyens ◽  
Rhonda Righter

We study the impact of service time distributions on the distribution of the maximum queue length during a busy period for the MX/G/1 queue. The maximum queue length is an important random variable to understand when designing the buffer size for finite-buffer (M/G/1/n) systems. We show the somewhat surprising result that, for three variations of the preemptive last-come–first-served discipline, the maximum queue length during a busy period is smaller when service times are more variable (in the convex sense).


Sign in / Sign up

Export Citation Format

Share Document