Wavelet analysis of pressure fluctuation in gas-solid two-phase flow in a horizontal pipe

Author(s):  
Ren Tong
2018 ◽  
Author(s):  
Munzarin Morshed ◽  
Syed Imtiaz ◽  
Mohammad Aziz Rahman

2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

2010 ◽  
Author(s):  
W. H. Liu ◽  
L. J. Guo ◽  
Liejin Guo ◽  
D. D. Joseph ◽  
Y. Matsumoto ◽  
...  

2016 ◽  
Vol 40 (3) ◽  
pp. 746-761 ◽  
Author(s):  
Weiling Liu ◽  
Chao Tan ◽  
Feng Dong

Two-phase flow widely exists in many industries. Understanding local characteristics of two-phase flow under different flow conditions in piping systems is important to design and optimize the industrial process for higher productivity and lower cost. Air–water two-phase flow experiments were conducted with a 16×16 conductivity wire-mesh sensor (WMS) in a horizontal pipe of a multiphase flow facility. The cross-sectional void fraction time series was analysed by the probability density function (PDF), which described the void fraction fluctuation at different flow conditions. The changes and causes of PDFs during a flow regime transition were analysed. The local structure and flow behaviour were characterized by the local flow spectrum energy analysis and the local void fraction distribution (horizontal, vertical and radial direction) analysis. Finally, three-dimensional transient flow fluctuation energy evolution and characteristic scale distribution based on wavelet analysis of air–water two-phase flow were presented, which revealed the structural features of each phase in two-phase flow.


Author(s):  
L. Wenhong ◽  
G. Liejin ◽  
Z. Ximin ◽  
L. Kai ◽  
Y. Long ◽  
...  

1990 ◽  
Vol 106 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Hiroshi TAKAHASHI ◽  
Kengo TAKAMIZAWA ◽  
Tadashi MASUYAMA

2019 ◽  
Vol 70 ◽  
pp. 102967
Author(s):  
Deendarlianto ◽  
Akhmad Zidni Hudaya ◽  
Indarto ◽  
Katya Dara Ozzilenda Soegiharto

Author(s):  
Wenwu Zhang ◽  
Zhiyi Yu ◽  
Yongjiang Li ◽  
Jianxin Yang ◽  
Qing Ye

Pressure fluctuation in single-phase pumps has been studied widely, while less attention has been paid to research on multiphase pumps that are commonly used in the petroleum chemical industry. Therefore, this study investigates the pressure fluctuation for a multiphase rotodynamic pump handling air–water two-phase flow. Simulations based on the Euler two-fluid model were carried out using ANSYS_CFX16.0 at different Inlet Gas Void Fractions (IGVFs) and various flow rate values. Under conditions of IGVF = 0% (pure water) and IGVF = 15%, the accuracy of the numerical method was tested by comparing the experimental data. The results showed that the rotor–stator interaction was still the main generation driver of pressure fluctuation in gas–liquid two-phase pumps. However, the fluctuation near the impeller outlet ascribe to the rotor–stator interaction was weakened by the complex gas–liquid flow. For the different IGVF, the variation trend of fluctuation was similar along the streamwise direction. That is, the fluctuation in the impeller increased before decreasing, while in the guide vane it decreased gradually. Also, the fluctuation in the guide vane was generally greater than for the impeller and the maximum amplitude appeared in the vicinity of guide vane inlet.


Sign in / Sign up

Export Citation Format

Share Document