Local characteristic of horizontal air–water two-phase flow by wire-mesh sensor

2016 ◽  
Vol 40 (3) ◽  
pp. 746-761 ◽  
Author(s):  
Weiling Liu ◽  
Chao Tan ◽  
Feng Dong

Two-phase flow widely exists in many industries. Understanding local characteristics of two-phase flow under different flow conditions in piping systems is important to design and optimize the industrial process for higher productivity and lower cost. Air–water two-phase flow experiments were conducted with a 16×16 conductivity wire-mesh sensor (WMS) in a horizontal pipe of a multiphase flow facility. The cross-sectional void fraction time series was analysed by the probability density function (PDF), which described the void fraction fluctuation at different flow conditions. The changes and causes of PDFs during a flow regime transition were analysed. The local structure and flow behaviour were characterized by the local flow spectrum energy analysis and the local void fraction distribution (horizontal, vertical and radial direction) analysis. Finally, three-dimensional transient flow fluctuation energy evolution and characteristic scale distribution based on wavelet analysis of air–water two-phase flow were presented, which revealed the structural features of each phase in two-phase flow.

Author(s):  
Étienne Lessard ◽  
Jun Yang

In support of a header/feeder phenomena study, an adiabatic, near-atmospheric, air-water flow loop was commissioned simulating a single feeder of a Pressurized Heavy Water Reactor’s primary heat transport system under a postulated Loss of Coolant Accident scenario. An extensive database in representative two-phase flow conditions was collected, 750 tests in total, in order to create a two-phase flow map to be used in the more complex geometries such as header/feeder systems. The flow loop consists of two vertical test sections, for upwards and downwards flow, and one horizontal test section, each with an inner diameter of 32 mm and at least 120 diameters in length. Superficial velocities extended up to 6 m/s for the water and 10 m/s for the air. Void fraction was measured by means of quick-closing valves and a pair of wire-mesh sensors (WMS) in each test section. Two-phase repeatability tests showed that the liquid and gas superficial velocities varied by 1.1% and 0.6% at reference conditions of 2.0 and 2.8 m/s, respectively. The corresponding void fraction measurements varied for the quick-closing valves by at most 6.8%, which indicates a low sensitivity to the closure time of the valves and an appropriate axial distance between them, and 2.3% for the WMS. For both measurement techniques, the largest variations occurred in the vertical downwards test section. For the formal two-phase tests, over 600 distinct flow conditions were performed. The results showed that the two measurement techniques agreed within 5% at high void fractions and low liquid flow rates in vertical flow. For all other cases corresponding to the transitional or dispersed bubbly flow regime, the WMS over-estimated the void fraction by a consistent bias. An empirical correction is proposed, with a root-mean-square error of 6.6% across all tests. The void fraction map resulting from this database provides validation for the WMS measurements, a quantitative assessment of its uncertainty and range of applicability, and will be used as a reference in future tests under similar scale and flow conditions.


Author(s):  
Tatsuya Hazuku ◽  
Naohisa Tamura ◽  
Norihiro Fukamachi ◽  
Tomoji Takamasa ◽  
Takashi Hibiki ◽  
...  

Accurate prediction of the interfacial area concentration is essential to successful development of the interfacial transfer terms in the two-fluid model. Mechanistic modeling of the interfacial area concentration entirely relies on accurate local flow measurements over extensive flow conditions and channel geometries. From this point of view, accurate measurements of flow parameters such as void fraction, interfacial area concentration, gas velocity, bubble Sauter mean diameter, and bubble number density were performed by the image processing method at five axial locations in vertical upward bubbly flows using a 1.02 mm-diameter pipe. The frictional pressure loss was also measured by a differential pressure cell. In the experiment, the superficial liquid velocity and the void fraction ranged from 1.02 m/s to 4.89 m/s and from 0.980% to 24.6%, respectively. The obtained data give near complete information on the time-averaged local hydrodynamic parameters of two-phase flow. These data can be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. As the first step to understand the flow characteristics in mini-channels, the applicability of the existing drift-flux model, interfacial area correlation, and frictional pressure correlation was examined by the data obtained in the mini-channel.


Author(s):  
Olufemi E. Bamidele ◽  
Wael H. Ahmed ◽  
Marwan Hassan

Abstract The current work investigates two-phase flow induced vibrations in 90° U-bend. The two-phase induced vibration of the structure was investigated in the vertical, horizontal and axial directions for various flow patterns from bubbly flow to wavy and annular-dispersed flow. The void fractions at various locations along the piping including the fully developed void fraction and the void fraction at the entrance of the U-bend were fully investigated and correlated with the vibration amplitude. The results show that the excitation forces of the two-phase flow in a piping structure are highly dependent on the flow pattern and the flow conditions upstream of the bend. The fully developed void fraction and slip between phases are important in modelling of forces in U-bends and elbows.


Author(s):  
E T Pak ◽  
J C Lee

Pump performance characteristics change drastically under two-phase flow conditions from those of single-phase flow. This is due to a change in flow characteristics in the impeller. Owing to a positive pressure gradient the air bubble moves more slowly than the water in the impeller channel, but in the suction surface region of the impeller inlet, where a negative pressure gradient prevails, the bubbles move more quickly than the water. Thus, in the space just after this region the distributions of the void fraction obtained are considerably higher and uneven. The change in the pressure distribution owing to air admission is also particularly evident in the inlet region of the impeller. These changes bring about an alteration of the whole flow pattern in the impeller and also cause a drop in pump performance. The Reynolds-averaged Navier-Stokes equations for two-phase flow in a centrifugal pump impeller are solved using a finite volume method to obtain the pressure, velocities and void fraction respectively. Good agreement is achieved when the predicted results are compared with those measured experimentally within the range of bubbly flow conditions.


2020 ◽  
Vol 2020 (0) ◽  
pp. S05309
Author(s):  
Masaaki MUTO ◽  
Takuya WAKIYAMA ◽  
Hiroaki TSUBONE ◽  
Hideharu TAKAHASH ◽  
Hiroshige KIKURA

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3048 ◽  
Author(s):  
Qiaorui Si ◽  
Gérard Bois ◽  
Qifeng Jiang ◽  
Wenting He ◽  
Asad Ali ◽  
...  

The paper presents experimental and numerical investigations performed on a single stage, single-suction, horizontal-orientated centrifugal pump in air–water two-phase non-condensable flow conditions. Experimental measurements are performed in a centrifugal pump using pressure sensor devices in order to measure the wall static pressures at the inlet and outlet pump sections for different flow rates and rotational speeds combined with several air void fraction (a) values. Two different approaches are used in order to predict the pump performance degradations and perform comparisons with experiments for two-phase flow conditions: a one-dimensional two-phase bubbly flow model, and a full “Three-Dimensional Unsteady Reynolds Average Navier–Stokes” (3D-URANS) simulation using a modified k-epsilon turbulence model combined with the Euler–Euler inhomogeneous two-phase flow description. The overall and local flow features are presented and analyzed. Limitations concerning both approaches are pointed out according to some flow physical assumptions and measurement accuracies. Some additional suggestions are proposed in order to improve two-phase flow pump suction capabilities.


Author(s):  
Manuel A. Borregales ◽  
Ruben Ensalzado ◽  
Miguel Asuaje

Growing energy demand requires reliable, safe and long-lasting production systems, including, according to the new legislation, periodic inspections of the pipelines. Currently, design of cleaning tools meant for oil lines, is largely based on experimental information. Big service companies and research centres, built the right tools for their operations, but questions still remain regarding the behaviour of these devices under different flow conditions. In recent years, advances in CFD have allowed to analyse complex phenomena in many industrial applications, participating in technology improvement. The present work proposes a novel 2D CFD methodology to simulate the pigging processes, considering the straight movement of a Pig through a pipeline with a two-phase flow: water-air and oil-gas. The algorithm deforms the grid and re meshes specific domain sections to account for Pig translation relative to the pipe. Three Pig models (Mandrel Pigs, Foam Pigs and Spherical Pigs) were simulated in a horizontal pipe under single-phase liquid flow conditions. Subsequently Pigs were simulated under two-phase flow air-water conditions. Pressure and velocities profiles inside the pipe, and pressure distributions around the Pig were obtained. The result helps to understand the flow behaviour during the pigging processes, providing additional insight on design and operation of these devices.


2003 ◽  
Vol 23 (Supplement2) ◽  
pp. 215-216
Author(s):  
Shinya TSUJINO ◽  
Masahiro TAKEI ◽  
Mitsuaki OCHI

2019 ◽  
Vol 9 (5) ◽  
pp. 4649-4653 ◽  
Author(s):  
V. A. Musa ◽  
L. A. Abdulkareem ◽  
O. M. Ali

Air-water two-phase flow in pipes introduces a noticeable challenge due to the complexity of the fluids. Thus, to estimate the best design and reasonable financing cost of the transportation pipelines where the bends are presenting a part of their accessories, the investigators should have been able to estimate the flow regime occurring at different directions. An experiment was carried out by using a 90o bend fixed with two pipes where the flow was upstream from a vertical to a horizontal pipe which were representing the bend inlet and outlet respectively. Two wire-mesh sensors were used for obtaining the data of the void fractions (α) at water superficial velocities (Usl) which changed from 0.052 to 0.419m/s, and air superficial velocities (Usg) from 0.05 to 4.7m/s. Furthermore, the characterization of flow regimes of the air-water flow at both bend inlet and outlet were competed accurately by using void fraction analysis of the time series, Power Spectral Density (PSD), tomographic images observed by the sensor program, and the Probability Density Function (PDF) method. The flow regimes of vertical flow lines at the bend inlet were observed as bubbly, cap-bubble, slug, and churn flow, whereas the flow regimes of the horizontal flow line at the bend outlet were characterized as having stratified, stratified wavy, bubbly, plug, slug, wavy annular, and semi-annular flow due to the gravity and bend effects.


Sign in / Sign up

Export Citation Format

Share Document