scholarly journals Microwave Tomography for Industrial Process Imaging: Example Applications and Experimental Results.

2017 ◽  
Vol 59 (5) ◽  
pp. 61-71 ◽  
Author(s):  
Zhipeng Wu ◽  
Haigang Wang
Author(s):  
Divya Balaso Kamble

Sorting of products is a very difficult industrial process. Continuous manual sorting creates consistency issues. This paper describes a working prototype designed for automatic sorting of objects based on the metal detector KY-036 sensor was used to detect the colour of the product and the PIC16F628A microcontroller was used to control the overall process. The identification of the colour is based on the frequency analysis of the output of TCS230 sensor. One conveyor belts were used, it controlled by separate DC motors. The belt is for placing the product to be analysed by the colour sensor, having separated compartments, in order to separate the products. The experimental results promise that the prototype will fulfil the needs for higher production and precise quality in the field of automation.


Author(s):  
E. Al Hosani ◽  
M. Soleimani

Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue ‘Supersensing through industrial process tomography’.


2018 ◽  
Vol 66 (7) ◽  
pp. 3497-3510 ◽  
Author(s):  
Federico Boero ◽  
Alessandro Fedeli ◽  
Matteo Lanini ◽  
Manuela Maffongelli ◽  
Ricardo Monleone ◽  
...  

Solar Energy ◽  
2002 ◽  
Author(s):  
Elradi A. Musa ◽  
K. Sopian ◽  
Shahrir Abdullah

The double-pass solar collector with porous media in the lower channel provides a higher outlet temperature compared to the conventional single-pass collector. Therefore, the thermal efficiency of the solar collector is increasing. The solar collector can be used for a wide variety of applications such as solar industrial process heat and solar drying of agricultural produce. A theoretical model has been developed for the double-pass solar collector. An experimental setup has been designed and constructed. Comparisons of the theoretical and the experimental results have been conducted. Such comparisons include the outlet temperatures and thermal efficiencies of the solar collector for various design and operating conditions. Close agreement has been obtained between the theoretical and experimental results. In addition, heat transfer and pressure drop relationships have been developed for air following through the porous media. The porous media has been arranged with difference porosities to increase heat transfer, area density and the total heat transfer rate. The heat transfer coefficient and friction factors are strong function of porosity.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
D. S. Montero ◽  
C. Vázquez

A low-cost intensity-based polymer optical fiber (POF) sensor for liquid detection applied to volumetric flasks is presented. Experimental results demonstrate the viability of the POF-based sensor system in a high-accuracy liquid level measurement scenario. Moreover, a wireless mesh sensor network based on ZigBee specification protocol to address multiplexed POF-based sensor is also developed. Experimental results demonstrate the feasibility to address a high number of optical sensors in an industrial process framework by means of this low-cost wireless solution.


2006 ◽  
Vol 129 (2) ◽  
pp. 207-210
Author(s):  
Virginie Bogard ◽  
Philippe Revel ◽  
Yannick Hetet

This study presents 2D experimental results and the numerical simulations of thermal loads in order to observe their influences on the life of mechanical systems. The experimental and thermal evolution was measured using several thermocouples and an infrared pyrometer. In fact, the thermal loading was determined by the resolution of an inverse process where the parameters of thermal laws were identified by minimizing the difference between the experimental results and the numerical simulations. After this optimization process, the mechanical modeling by the finite element method was carried out by applying the optimized thermal loading. The laws of elastoviscoplastic behavior are applied in the working temperature range of a continuous casting rollers tool. This modeling constitutes a technological means to choose a type of a coating material and its optimum thickness and to test different thermal loads in order to optimize the industrial process and to improve the tool’s life.


Author(s):  
Eric Seinturier ◽  
Jean-Pierre Lombard ◽  
Marc Berthillier ◽  
Olivier Sgarzi

It is currently a major challenge for aeroengines manufacturer to be able to predict early in the design process the dynamic response of bladed disk. To guaranty a good accuracy of prediction, it is necessary to define properly the excitation (unsteady aerodynamics) and to take into account some phenomenon such as mistuning. This paper proposes an application of Snecma prediction method for mistune forced response on an experimental test case. The method used is a component modes synthesis method similar to the one proposed by Castanier and Pierre in 1997 [1] and validated against experiment in [2]. Some improvement have been performed to take into account more accurately the centrifugal forces effects in the projection basis and to couple the method with unsteady Computational Fluids Dynamic (CFD) codes. It is now possible to use this method in an industrial process. The method is applied to a HP turbine representative case, for which experimental results are available. These experimental results have been obtained in a European Community funded project dedicated to forced response study [3]. Mistuning effects have been measured. Moreover, a full characterization, of unsteady aerodynamics, aeroelastic and structural dynamics aspects have been performed. The results obtained with the proposed method are then compared to the experimental one. This application shows the consistency of the method and its efficiency.


Sign in / Sign up

Export Citation Format

Share Document