Multi-Scale 3D Printed Capillary Gripper

Author(s):  
Marco Cavaiani ◽  
Sam Dehaeck ◽  
Youen Vitry ◽  
Pierre Lambert
Keyword(s):  
2021 ◽  
pp. 130173
Author(s):  
Li Liang ◽  
Tao Huang ◽  
Songxiang Yu ◽  
Weiwei Cao ◽  
Tingting Xu
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 290
Author(s):  
Tim Karsten ◽  
Vesna Middelkoop ◽  
Dorota Matras ◽  
Antonis Vamvakeros ◽  
Stephen Poulston ◽  
...  

This work presents multi-scale approaches to investigate 3D printed structured Mn–Na–W/SiO2 catalysts used for the oxidative coupling of methane (OCM) reaction. The performance of the 3D printed catalysts has been compared to their conventional analogues, packed beds of pellets and powder. The physicochemical properties of the 3D printed catalysts were investigated using scanning electron microscopy, nitrogen adsorption and X-ray diffraction (XRD). Performance and durability tests of the 3D printed catalysts were conducted in the laboratory and in a miniplant under real reaction conditions. In addition, synchrotron-based X-ray diffraction computed tomography technique (XRD-CT) was employed to obtain cross sectional maps at three different positions selected within the 3D printed catalyst body during the OCM reaction. The maps revealed the evolution of catalyst active phases and silica support on spatial and temporal scales within the interiors of the 3D printed catalyst under operating conditions. These results were accompanied with SEM-EDS analysis that indicated a homogeneous distribution of the active catalyst particles across the silica support.


Author(s):  
Yann Quinsat ◽  
Claire Lartigue ◽  
Christopher A. Brown ◽  
Lamine Hattali

2021 ◽  
pp. 2104001
Author(s):  
Menglu Zhao ◽  
Danlei Yang ◽  
Suna Fan ◽  
Xiang Yao ◽  
Jiexin Wang ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 626 ◽  
Author(s):  
Adja B. R. Touré ◽  
Elisa Mele ◽  
Jamieson K. Christie

Three-dimensional (3D) printing has been combined with electrospinning to manufacture multi-layered polymer/glass scaffolds that possess multi-scale porosity, are mechanically robust, release bioactive compounds, degrade at a controlled rate and are biocompatible. Fibrous mats of poly (caprolactone) (PCL) and poly (glycerol sebacate) (PGS) have been directly electrospun on one side of 3D-printed grids of PCL-PGS blends containing bioactive glasses (BGs). The excellent adhesion between layers has resulted in composite scaffolds with a Young’s modulus of 240–310 MPa, higher than that of 3D-printed grids (125–280 MPa, without the electrospun layer). The scaffolds degraded in vitro by releasing PGS and BGs, reaching a weight loss of ~14% after 56 days of incubation. Although the hydrolysis of PGS resulted in the acidification of the buffer medium (to a pH of 5.3–5.4), the release of alkaline ions from the BGs balanced that out and brought the pH back to 6.0. Cytotoxicity tests performed on fibroblasts showed that the PCL-PGS-BGs constructs were biocompatible, with cell viability of above 125% at day 2. This study demonstrates the fabrication of systems with engineered properties by the synergy of diverse technologies and materials (organic and inorganic) for potential applications in tendon and ligament tissue engineering.


2018 ◽  
Vol 24 (1) ◽  
pp. 177-187 ◽  
Author(s):  
Dalia Calneryte ◽  
Rimantas Barauskas ◽  
Daiva Milasiene ◽  
Rytis Maskeliunas ◽  
Audrius Neciunas ◽  
...  

Purpose The purpose of this paper is to investigate the influence of geometrical microstructure of items obtained by applying a three-dimensional (3D) printing technology on their mechanical strength. Design/methodology/approach Three-dimensional printed items (3DPI) are composite structures of complex internal constitution. The buildup of the finite element (FE) computational models of 3DPI is based on a multi-scale approach. At the micro-scale, the FE models of representative volume elements corresponding to different additive layer heights and different thicknesses of extruded fibers are investigated to obtain the equivalent non-linear nominal stress–strain curves. The obtained results are used for the creation of macro-scale FE models, which enable to simulate the overall structural response of 3D printed samples subjected to tensile and bending loads. Findings The validation of the models was performed by comparing the computed results against the experimental ones, where satisfactory agreement has been demonstrated within a marked range of thicknesses of additive layers. Certain inadequacies between computed against experimental results were observed in cases of thinnest and thickest additive layers. The principle explanation of the reasons of inadequacies takes into account the poorer quality of mutual adhesion in case of very thin extruded fibers and too-early solidification effect. Originality/value Flexural and tensile experiments are simulated by FE models that are created with consideration to microstructure of 3D printed samples.


2020 ◽  
Vol 34 ◽  
pp. 101220 ◽  
Author(s):  
Yao Li ◽  
Kai Chen ◽  
R. Lakshmi Narayan ◽  
Upadrasta Ramamurty ◽  
Yudong Wang ◽  
...  

2020 ◽  
Vol 107 ◽  
pp. 110269 ◽  
Author(s):  
Qing Gao ◽  
Chaoqi Xie ◽  
Peng Wang ◽  
Mingjun Xie ◽  
Haibing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document