Multi-scale finite element modeling of 3D printed structures subjected to mechanical loads

2018 ◽  
Vol 24 (1) ◽  
pp. 177-187 ◽  
Author(s):  
Dalia Calneryte ◽  
Rimantas Barauskas ◽  
Daiva Milasiene ◽  
Rytis Maskeliunas ◽  
Audrius Neciunas ◽  
...  

Purpose The purpose of this paper is to investigate the influence of geometrical microstructure of items obtained by applying a three-dimensional (3D) printing technology on their mechanical strength. Design/methodology/approach Three-dimensional printed items (3DPI) are composite structures of complex internal constitution. The buildup of the finite element (FE) computational models of 3DPI is based on a multi-scale approach. At the micro-scale, the FE models of representative volume elements corresponding to different additive layer heights and different thicknesses of extruded fibers are investigated to obtain the equivalent non-linear nominal stress–strain curves. The obtained results are used for the creation of macro-scale FE models, which enable to simulate the overall structural response of 3D printed samples subjected to tensile and bending loads. Findings The validation of the models was performed by comparing the computed results against the experimental ones, where satisfactory agreement has been demonstrated within a marked range of thicknesses of additive layers. Certain inadequacies between computed against experimental results were observed in cases of thinnest and thickest additive layers. The principle explanation of the reasons of inadequacies takes into account the poorer quality of mutual adhesion in case of very thin extruded fibers and too-early solidification effect. Originality/value Flexural and tensile experiments are simulated by FE models that are created with consideration to microstructure of 3D printed samples.

Author(s):  
Hassan Gonabadi ◽  
Yao Chen ◽  
Arti Yadav ◽  
Steve Bull

AbstractAlthough the literature is abundant with the experimental methods to characterize mechanical behavior of parts made by fused filament fabrication 3D printing, less attention has been paid in using computational models to predict the mechanical properties of these parts. In the present paper, a numerical homogenization technique is developed to predict the effect of printing process parameters on the elastic response of 3D printed parts with cellular lattice structures. The development of finite element computational models of printed parts is based on a multi scale approach. Initially, at the micro scale level, the analysis of micro-mechanical models of a representative volume element is used to calculate the effective orthotropic properties. The finite element models include different infill densities and building/raster orientation maintaining the bonded region between the adjacent fibers and layers. The elastic constants obtained by this method are then used as an input for the creation of macro scale finite element models enabling the simulation of the mechanical response of printed samples subjected to the bending, shear, and tensile loads. Finally, the results obtained by the homogenization technique are validated against more realistic finite element explicit microstructural models and experimental measurements. The results show that, providing an accurate characterization of the properties to be fed into the macro scale model, the use of the homogenization technique is a reliable tool to predict the elastic response of 3D printed parts. The outlined approach provides faster iterative design of 3D printed parts, contributing to reducing the number of experimental replicates and fabrication costs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhangxin Guo ◽  
Zhiqiang Yu ◽  
Shiyi Wei ◽  
Guoliang Qi ◽  
Yongcun Li ◽  
...  

PurposeThe cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Design/methodology/approachFinite element method is employed in this work.FindingsThe simulated results match the experimental results well, which demonstrates the finite element analysis models are reliable. Compared with the one- and two-dimensional finite element analysis, temperature and degree of cure can be calculated at any point within composite structures in the present simulation analysis. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.Originality/valueA coupled thermokinetic simulation of the liquid composite molding process based on a three-dimensional finite element method is presented. The cure simulation of composite structures with arbitrary geometry can be investigated by the finite element program.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Vavilada Satya Swamy Venkatesh ◽  
Ashish Bhalchandra Deoghare

Purpose During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face masks, face shields, door adapters, test swabs and ventilator valves. This paper aims to present a comprehensive study on the role of 3D printing during the coronavirus (COVID-19) pandemic, its safety and its challenges. Design/methodology/approach This review paper focuses on the applications of 3D printing in the fight against COVID-19 along with the safety and challenges associated with 3D printing to fight COVID-19. The literature presented in this paper is collected from the journal indexing engines including Scopus, Google Scholar, ResearchGate, PubMed, Web of Science, etc. The main keywords used for searches were 3D printing COVID-19, Safety of 3D printed parts, Sustainability of 3D printing, etc. Further possible iterations of the keywords were used to collect the literature. Findings The applications of 3D printing in the fight against COVID-19 are 3D printed face masks, shields, ventilator valves, test swabs, drug deliveries and hands-free door adapters. As most of these measures are implemented hastily, the safety and reliability of these parts often lacked approval. The safety concerns include the safety of the printed parts, operators and secondary personnel such as the workers in material preparation and transportation. The future challenges include sustainability of the process, long term supply chain, intellectual property and royalty-free models, etc. Originality/value This paper presents a comprehensive study on the applications of 3D printing in the fight against COVID-19 with emphasis on the safety and challenges in it.


2018 ◽  
Vol 24 (8) ◽  
pp. 1365-1379 ◽  
Author(s):  
Zuhao Li ◽  
Chenyu Wang ◽  
Chen Li ◽  
Zhonghan Wang ◽  
Fan Yang ◽  
...  

PurposeThis paper aims to review the latest applications in terms of three-dimensional printed (3DP) metal implants in orthopedics, and, importantly, the design of 3DP metal implants through a series of cases operated at The Second Hospital of Jilin University were presented.Design/methodology/approachThis paper is available to practitioners who are use 3DP implants in orthopedics. This review began with the deficiency of traditional prostheses and basic concepts of 3DP implants. Then, representative 3DP clinical cases were summarized and compared, and the experiences using customized prostheses and directions for future potential development are also shown.FindingsThe results obtained from the follow-up of clinical applications of 3DP implants show that the 3D designed and printed metal implants could exhibit good bone defect matching, quick and safe joint functional rehabilitation as well as saving time in surgery, which achieved high patient satisfaction collectively.Originality/valueSingle center experiences of 3DP metal implants design were shared and the detailed technical points between various regions were compared and analyzed. In conclusion, the 3DP technology is infusive and will present huge potential to reform future orthopedic practice.


2018 ◽  
Vol 24 (2) ◽  
pp. 477-484
Author(s):  
Hossein Goodarzi Hosseinabadi ◽  
Reza Bagheri ◽  
Volker Altstädt

Purpose Hexagonal honeycombs with meso-metric cell size show excellent load bearing and energy absorption potential, which make them attractive in many applications. However, owing to their bend-dominated structure, honeycombs are susceptible to deformation localization. The purpose of this study is to provide insight about shear band propagation in struts of 3D-printed honeycombs and its relation to the achieved macroscopic mechanical behavior. Design/methodology/approach Hexagonal honeycombs and unit cell models are 3D-printed by fused deposition modeling (FDM). The samples are exposed to compression loading and digital image correlation technique and finite element analyses are incorporated. Findings It is found that the strain contours, which are obtained by finite element, are in agreement with experimental measurements made by DIC. In addition, three stages of shear band propagation in struts of 3D-printed honeycombs are illustrated. Then the correlation between shear band propagation stages and the achieved macroscopic mechanical responses is discussed in detail. Originality/value For the first time, a hierarchical activation of different modes of shear band propagation in struts of a 3D-printed honeycomb is reported. This information can be of use for designing a new generation of honeycombs with tailor-made localization and energy absorption potential.


2019 ◽  
Vol 91 (6) ◽  
pp. 814-819
Author(s):  
Zdobyslaw Jan Goraj ◽  
Mariusz Kowalski ◽  
Bartlomiej Goliszek

Purpose This paper aims to present the results of calculations that checked how the longerons and frames arrangement affects the stiffness of a conventional structure. The paper focuses only on first stage of research – analysis of small displacement. Main goal was to compare different structures under static loads. These results are also compared with the results obtained for a geodetic structure fuselage model of the same dimensions subjected to the same internal and external loads. Design/methodology/approach The finite element method analysis was carried out for a section of the fuselage with a diameter of 6.3 m and a length equal to 10 m. A conventional and lattice structure – known as geodetic – was used. Findings Finite element analyses of the fuselage model with conventional and geodetic structures showed that with comparable stiffness, the weight of the geodetic fuselage is almost 20 per cent lower than that of the conventional one. Research limitations/implications This analysis is limited to small displacements, as the linear version of finite element method was used. Research and articles planned for the future will focus on nonlinear finite element method (FEM) analysis such as buckling, structure stability and limit cycles. Practical implications The increasing maturity of composite structures manufacturing technology offers great opportunities for aircraft designers. The use of carbon fibers with advanced resin systems and application of the geodetic fuselage concept gives the opportunity to obtain advanced structures with excellent mechanical properties and low weight. Originality/value This paper presents very efficient method of assessing and comparison of the stiffness and weight of geodetic and conventional fuselage structure. Geodetic fuselage design in combination with advanced composite materials yields an additional fuselage weight reduction of approximately 10 per cent. The additional weight reduction is achieved by reducing the number of rivets needed for joining the elements. A fuselage with a geodetic structure compared to the classic fuselage with the same outer diameter has a larger inner diameter, which gives a larger usable space in the cabin. The approach applied in this paper consisting in analyzing of main parameters of geodetic structure (hoop ribs, helical ribs and angle between the helical ribs) on fuselage stiffness and weight is original.


Sign in / Sign up

Export Citation Format

Share Document