Synthesis Method for CGRA Processors based on Imitation Model

Author(s):  
Aleksandr Penskoi
MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).


2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2019 ◽  
Author(s):  
Ajay Gautam ◽  
Marcel Sadowski ◽  
Nils Prinz ◽  
Henrik Eickhoff ◽  
Nicolo Minafra ◽  
...  

<p>Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I), a site-disorder between the anionsS<sup>2–</sup>and X<sup>–</sup>has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such disorder in Li<sub>6</sub>PS<sub>5</sub>Br can be engineered <i>via</i>the synthesis method. By comparing fast cooling (<i>i.e. </i>quenching) to more slowly cooled samples, we find that anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with <i>ab-initio</i>molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within one minute of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced <i>via</i>quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.</p>


2011 ◽  
Vol 30 (3) ◽  
pp. 738-741
Author(s):  
Xia Zhang ◽  
Hai-hong Tao ◽  
Gui-sheng Lian

2019 ◽  
Vol 56 (3) ◽  
pp. 652-656
Author(s):  
Raul Chioibas ◽  
Florin Borcan ◽  
Ovidiu Mederle ◽  
Dana Stoian ◽  
Codruta Marinela Soica

Zinc oxide (ZnO) is an inorganic compound used for its antiseptic and skin healing properties. It is an excellent protective filter against UV radiation and it can be used as white pigment in pharmaceutical preparations. In this study, nano-ZnO particles were obtained by ultrasound treatment, and respectively by repeated freezing/heating process. The influence of synthesis method and of ultrasound generator parameters on the particles size and stability was observed. The results reveal that were obtained samples with a very good stability and sizes between 15 and 96 nm. It was found that synthesis based on ultrasound treatment lead to the formation of nanoparticles with lower sizes.


Sign in / Sign up

Export Citation Format

Share Document