Enhanced catalytic activity of low-Pt content nanocatalysts supported on hollow carbon spheres for the ORR in alkaline media

MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).

MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2973-2989
Author(s):  
J.C. Martínez-Loyola ◽  
I.L. Alonso-Lemus ◽  
M.E. Sánchez-Castro ◽  
B. Escobar-Morales ◽  
J.R. Torres-Lubián ◽  
...  

AbstractHerein, we report a methodology that leads to the formation of Ru metallic sites, followed by the development and anchorage of Pt-Ru alloyed nanoparticles on the surface of Ordered Mesoporous Hollow Carbon Spheres (OMHCS). Along with the Ru sites, it is demonstrated that the functionalization promotes the formation of functional groups on the surface of the OMHCS. In a first stage, OMHCS are functionalized with the [(η6-C6H5OCH2CH2OH)RuCl2]2 (Ru-dim) and [(η6-C6H4CH(CH3)2CH3)RuCl2]2 (Ru-cym) organometallic compounds. Afterwards, Pt nanoparticles are dispersed by the microwave-assisted polyol method over the functionalized supports obtaining the low-metal content 5 wt. % Pt/OMHCSRu-dim and Pt/OMHCSRu-cym nanocatalysts. The degree of Ru alloyed is found to be around 35%. The low-Pt content Pt/OMHCSRu-cym and Pt/OMHCSRu-dim exhibit a higher catalytic activity for the Oxygen (OER) and the Hydrogen (HER) Evolution Reactions than the Pt/C benchmark and the Pt/OMHCS nanocatalysts. The overpotential for the OER at 10 mA cm-2 (ηOER) is 300 mV and 210 mV smaller at Pt/OMHCSRu-cym and Pt/OMHCSRu-dim compared to Pt/C, respectively. The corresponding values of the HER at -10 mA cm-2 (ηHER) are 14 and 18 mV smaller, respectively. The high catalytic activity of Pt/OMHCSRu-cym and Pt/OMHCSRu-dim has been attributed in part to the presence of Ru0 and RuO2 species from organometallic functionalization, and the modification of the d-valence band of Pt. Their high performance for the OER and the HER opens new lines of research for the design of nanocatalysts for alkaline electrochemical water splitting.


2012 ◽  
Vol 531 ◽  
pp. 358-361 ◽  
Author(s):  
Ming Mei Zhang ◽  
Qian Sun ◽  
Ji Min Xie

A well-dispersed Ni nanoparticles on multi-walled carbon nanotubes (Ni@MWCNTs) was prepared by chemical vapor deposition (CVD) method using a vacuum quartz tube furnace at the temperature of 600°C. The scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were performed to characterize the synthesized catalyst. It shows an unfirom dispersion of Ni nanoparticles on MWCNTs with the average particle size of 8.6 nm. The as synthesized catalyst was applied in a redox reaction of 4-nitrophenol, which showed very high catalytic activity, stability and well conversion. The catalyst can be easily separated due to the magnetical performance


2022 ◽  
Vol 9 ◽  
Author(s):  
Xi Wang ◽  
Ying Ren ◽  
Ni Suo ◽  
Guifeng Zhang

For fuel cells, to produce high-quality and low-platinum catalyst is a pressing technical problem. In this study, graphene cathode catalysts with controllable platinum content were decorated by pyrolyzing chloroplatinic acid under various process parameters to obtain a high catalytic activity and durability. The results show that platinum particles generated by pyrolyzing chloroplatinic acid are uniformly loaded on graphene without agglomeration. The average particle size of platinum particles is about 2.12 nm. The oxygen reduction reaction catalytic activity of catalyst samples first increases, then decreases with increasing platinum loading in cyclic voltammetry and LSV. Compared with the commercial Pt/C (20 wt% Pt) catalyst, the initial potential and the current density retention rate of the catalyst decorated with 8% platinum are 55 mV and 23.7% higher, respectively. From i-t curves, it was found that the stability of the catalyst prepared in this paper was improved compared with the commercial Pt/C catalyst. The catalysts prepared in the present research exhibits superior catalytic activity and stability.


2021 ◽  
Vol 506 ◽  
pp. 230170
Author(s):  
Lantao Liu ◽  
Xiangyu Sun ◽  
Yue Dong ◽  
Dengke Wang ◽  
Zheng Wang ◽  
...  

2020 ◽  
Vol 35 (6) ◽  
pp. 630-645
Author(s):  
Jia-ying Yang ◽  
Hao-jie Han ◽  
Hlib Repich ◽  
Ri-cheng Zhi ◽  
Chang-zhen Qu ◽  
...  

Langmuir ◽  
2021 ◽  
Vol 37 (13) ◽  
pp. 4007-4015
Author(s):  
Qianyi Tao ◽  
Zhifeng Zhu ◽  
Sunjie Ye ◽  
Gaojian Lin ◽  
Hui Chen ◽  
...  

2016 ◽  
Vol 52 (78) ◽  
pp. 11693-11696 ◽  
Author(s):  
Lei Liu ◽  
Shi-Da Xu ◽  
Qing Yu ◽  
Feng-Yun Wang ◽  
Hui-Ling Zhu ◽  
...  

Nitrogen-doped hollow carbon spheres with a wrinkled surface were synthesized through direct pyrolysis of core–shell structured graphene oxide–resol@melamine formaldehyde composites.


Sign in / Sign up

Export Citation Format

Share Document