The role of dissolved gas in longevity of Cassie states for immersed superhydrophobic surfaces

Author(s):  
Wei-Yang Sun ◽  
Chang-Jin C J Kim
2006 ◽  
Vol 36 (2) ◽  
pp. 117-124 ◽  
Author(s):  
N F Bunkin ◽  
S I Bakum

1995 ◽  
Vol 117 (3) ◽  
pp. 687-692 ◽  
Author(s):  
S. M. You ◽  
T. W. Simon ◽  
A. Bar-Cohen ◽  
Y. S. Hong

Experimental results on pool boiling heat transfer from a horizontal cylinder in an electronic cooling fluid (FC-72) are presented. The effects on the boiling curve of having air dissolved in the fluid are documented, showing that fluid in the vicinity of the heating element is apparently liberated of dissolved gas during boiling. Dissolved gas was found to influence boiling incipience only with high gas concentrations (>0.005 moles/mole). For low-to-moderate concentrations, a larger superheat is required to initiate boiling and a hysteresis is observed between boiling curves taken with increasing and decreasing heat flux steps. Boiling, a very effective mode of heat transfer, is attractive for electronics cooling. The present experiment provides further documentation of the role of dissolved gas on the incipience process and shows similarities with subcooled boiling of a gas-free fluid.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Wei Su ◽  
Longnan Li ◽  
Xiao Yan ◽  
Nenad Miljkovic

Abstract Understanding the frosting mechanisms on solid surfaces is crucial to a broad range of industrial sectors such as aerospace, power transmission, and refrigeration. During the last few decades, extensive studies have been conducted on fundamental frosting phenomena, including ice nucleation, growth, bridging, and frost propagation, with few studies focusing on frost halo formation which has been shown to affect frosting dynamics on hydrophilic substrates. The role of frost halo dynamics formation on superhydrophobic surface remains unclear due to limited characterization in the past. Here, in order to study frost propagation dynamics, particularly freezing-induced vapor diffusion and frost halo formation, condensation frosting on highly-reflective nanostructured superhydrophobic surfaces (θ ≈170º) was visualized using high-speed top-view optical microscopy. Condensation frosting was initiated by cooling the surface to -20 ± 0.5°C in atmospheric conditions (relative humidity ≈50% and air temperature ≈25°C). We show that the wave front reaches neighboring supercooled droplets along the path of frost propagation, resulting in supercooled droplet freezing within ~100 ms and numerous microscale (~1 µm) condensing droplets forming around the primary freezing droplet. The microscale droplets form a condensate halo stretching two times the freezing droplet radius. The condensate halo was formed by the rapid evaporation of the supercooled recalescent freezing droplet due to the fast (~100 ms) release of latent heat, resulting in the heating of the freezing droplet and thus outwards diffusion of vapor. Further diffusion of vapor led to the subsequent evaporation of the halo condensate droplets within ~4 s. Interestingly, accompanied by the freezing of the primary droplet and condensate halo formation, the neighboring satellite droplets in the halo zone were observed to oscillate directionally and dramatically, indicative of the presence of a strong flow field disturbance due to rapid vapor diffusion. The visualizations presented here not only help to quantify the physics of condensate halo formation during frost wave propagation on superhydrophobic surfaces, but also provide insights into the role of freezing-induced vapor diffusion during frost dynamics.


2005 ◽  
Vol 103-104 ◽  
pp. 141-146 ◽  
Author(s):  
Guy Vereecke ◽  
Frank Holsteyns ◽  
Sophia Arnauts ◽  
S. Beckx ◽  
P. Jaenen ◽  
...  

Cleaning of nanoparticles (< 50nm ) is becoming a major challenge in semiconductor manufacturing and the future use of traditional methods, such as megasonic cleaning, is questioned. In this paper the capability of megasonic cleaning to remove nanoparticles without inflicting damage to fragile structures is investigated. The role of dissolved gas in cleaning efficiency indicates that cavitation is the main cleaning mechanism. Consequently gas mass-balance analyses are needed to optimize the performance of cleaning tools. When gas is dissolved in the cleaning present tools can remove nanoparticles down to about 30 nm using dilute chemistries at low temperature. Ultimate performance is limited by cleaning uniformity, which depends on tool design and operation. However no tool reached the target of high particle removal efficiency andlow damage. Significantly lower damage could only be obtained by decreasing the power, at the cost of a lower cleaning efficiency for nanoparticles. The development of damage-free megasonic is discussed.


2013 ◽  
Vol 110 (4) ◽  
Author(s):  
Anaïs Gauthier ◽  
Marco Rivetti ◽  
Jérémie Teisseire ◽  
Etienne Barthel

2018 ◽  
Vol 133 ◽  
pp. 930-942 ◽  
Author(s):  
Paul R. Paquin ◽  
Joy McGrath ◽  
Christopher J. Fanelli ◽  
Dominic M. Di Toro
Keyword(s):  

To investigate the role of roughness in superhydrophobic coatings a variety of superhydrophobic and non-superhydrophobic surfaces were synthesized using various polymer binders, nanosilica particles and fluoro chemistry on both glass and polycarbonate substrates. The roughness of the coatings was measured by profilometry and atomic force microscopy (AFM) and analyzed by a variety of statistical methods. Superhydrophobic surfaces showed a peak to peak distance below 5 microns and a radius of less than 0.5 micron, but this information alone was insufficient to predict superhydrophobicity. The skewness and kurtosis for the surfaces indicated that all coated samples, both superhydrophobic and non-superhydrophobic, had a random Gaussian roughness distribution, but there was no significant difference in the skewness and kurtosis values for either superhydrophobic or non-superhydrophobic surfaces. The power spectral density function (PSDF) was found to be an effective tool to predict the required roughness for superhydrophobicity and provides information over the entire range of length scales. The average peak radius for the micro and nano scales calculated from ACL and RMS values were found to be less than 3 µm and 520 nm, respectively, which supports the accepted theory is that superhydrophobic surfaces require tightly packed asperities and small micron and nano roughness. The characterization of the surfaces allowed experimental verification of theoretical models for the roughness factor and critical roughness parameters. It was found that the RMS/ACL values should be 0.35 or higher for designing surfaces with contact angles above 150°. This work shows a unique method for measuring, quantifying, and understanding the role of roughness, that can be used to design surfaces for superhydrophobicity and future applications such as self-cleaning, icephobicity, anti-biofouling, corrosion resistance, and water repellency.


Sign in / Sign up

Export Citation Format

Share Document