scholarly journals Supervisory Command and Data Acquisition (SCADA) system cyber security analysis using a live, virtual, and constructive (LVC) testbed

Author(s):  
Vincent Urias ◽  
Brian Van Leeuwen ◽  
Bryan Richardson

Due to the wide application of SCADA systems in national critical infrastructure, their cyber security issues and vulnerabilities have been a primary concern; whereas, the impact and consequences of cyber-attacks to these systems have the potential to result in catastrophic consequences in the physical domain. Therefore, estimating possible attack impacts and identifying system vulnerabilities are major concern in SCADA management and operations. However, it is quite difficult to plan, execute and review vulnerability analysis in critical infrastructure systems as well as in industrial control systems (such as SCADA system) due to its complexity, large-scale and heterogeneity. Consequently, a consistent domain-specific conceptual model is required to establish a generic framework for cyber security analysis to examine and investigate security threats on cyber-physical systems, the role of the entities within the system as well as system operations. The main contribution of this work is to present a multi-facets model to support cyber security analysis practices such as penetration testing, vulnerability assessment and risk analysis. The proposed model presents a common insight among different SCADA configurations, implementations and the employed protocols to handle its complexity, heterogeneous and scale. To demonstrate the usability as a proof of concept and applicability of the proposed model, the paper also presents an example illustrating how the proposed model can be employed to carry out security vulnerability assessment.


Author(s):  
Syed Misbahuddin ◽  
Nizar Al-Holou

A Supervisory Control and Data Acquisition (SCADA) system is composed of number of remote terminal units (RTUs) for collecting field data. These RTUs send the data back to a master station, via a communication link. The master station displays the acquired data and allows the operator to perform remote control tasks. An RTU is a microprocessor based standalone data acquisition control unit. As the RTUs work in harsh environment, the processor inside the RTU is susceptible to random faults. If the processor fails, the equipment or process being monitored will become inaccessible. This chapter proposes a fault tolerant scheme to untangle the RTU’s failure issues. According to the scheme, every RTU will have at least two processing elements. In case of either processor’s failure, the surviving processor will take over the tasks of the failed processor to perform its tasks. With this approach, an RTU can remain functional despite the failure of the processor inside the RTU. Reliability and availability modeling of the proposed fault tolerant scheme have been presented. Moreover, cyber security for SCADA system and recommendations for the mitigation of these issues have been discussed.


2020 ◽  
pp. 446-464
Author(s):  
Suhaila Ismail ◽  
Elena Sitnikova ◽  
Jill Slay

Past cyber-attacks on Supervisory Control and Data Acquisition (SCADA) Systems for Critical infrastructures have left these systems compromised and caused financial and economic problems. Deliberate attacks have resulted in denial of services and physical injury to the public in certain cases. This study explores the past attacks on SCADA Systems by examining nine case studies across multiple utility sectors including transport, energy and water and sewage sector. These case studies will be further analysed according to the cyber-terrorist decision-making theories including strategic, organisational and psychological theories based on McCormick (2000). Next, this study will look into cyber-terrorist capabilities in conducting attacks according to Nelson's (1999) approach that includes simple-unstructured, advance-structured and complex-coordinated capabilities. The results of this study will form the basis of a guideline that organisations can use so that they are better prepared in identifying potential future cybersecurity attacks on their SCADA systems.


Author(s):  
Ievgen Babeshko ◽  
Kostiantyn Leontiiev

Safety assessment of nuclear power plant instrumentation and control systems (NPP I&Cs) is a complicated and resource-consuming process that is required to be done so as to ensure the required safety level and comply to normative regulations. A lot of work has been performed in the field of application of different assessment methods and techniques, modifying them, and using their combinations so as to provide a unified approach in comprehensive safety assessment. Performed research has shown that there are still challenges to overcome, including rationale and choice of the safety assessment method, verification of assessment results, choosing and applying techniques that support safety assessment process, especially in the nuclear field. This chapter presents a developed framework that aggregates the most appropriate safety assessment methods typically used for NPP I&Cs.


2020 ◽  
Vol 16 (2) ◽  
pp. 91
Author(s):  
Qais Saif Qassim ◽  
Muhammad Reza Z'aba ◽  
Wan Azlan Wan Kamarulzaman ◽  
Norziana Jamil
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document