Spatial Interpolation of Missing Annual Average Daily Traffic Data Using Copula-Based Model

2019 ◽  
Vol 11 (3) ◽  
pp. 158-170 ◽  
Author(s):  
Xiaolei Ma ◽  
Sen Luan ◽  
Chuan Ding ◽  
Haode Liu ◽  
Yunpeng Wang
Transport ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Tomas Šliupas

This paper describes annual average daily traffic (AADT) forecasting for the Lithuanian highways using a forecasting method used by Idaho Department for Transportation, growth factor, linear regression and multiple regression. AADT forecasts obtained using these methods are compared with the forecasts evaluated by traffic experts and given in references. The results show that the best Lithuanian traffic data are obtained using Idaho forecasting method. It is assumed that the curve of AADT change should be exponential in the future.


Author(s):  
Dadang Mohamad ◽  
Kumares C. Sinha ◽  
Thomas Kuczek ◽  
Charles F. Scholer

A traffic prediction model that incorporates relevant demographic variables for county roads was developed. Field traffic data were collected from 40 out of 92 counties in Indiana. The selection of a county was based on population, state highway mileage, per capita income, and the presence of interstate highways. Three to four automatic traffic counters were installed in each selected county. Most counters installed on the selected road sections were based on the standard 48-hour traffic counts. Then, the obtained average daily traffic was converted to annual average daily traffic by means of adjustment factors. Multiple regression analysis was conducted to develop the model. There were quantitative and qualitative predictor variables used in the model development. To validate the developed model, additional field traffic data were collected from eight randomly selected counties. The accuracy measures of the validation showed the high accuracy of the model. The statistical analyses also found that the independent variables employed in the model were statistically significant. The number of independent variables included in the model was kept to a minimum.


2009 ◽  
Vol 36 (3) ◽  
pp. 427-438 ◽  
Author(s):  
Shy Bassan

Traffic data in general and traffic volume in particular are collected to determine the use and performance of the roadway system. Due to budget limitations, traffic volume cannot be counted day by day for every roadway within the state. Therefore, the volume on roadways without automatic traffic recorders (ATRs) can be determined by taking portable short-duration counts and using adjustment factors to produce annual average daily traffic (AADT) at a specific location. This study presents a statistical practical methodology that develops traffic pattern groups (TPGs) by combining roadways with similar traffic characteristics such as volume, seasonal variation, and land use in Delaware, USA. Monthly seasonal adjustment factors and their coefficient of variance (FCV) are analyzed for each group. To meet the desired confidence level and precision intervals, the TPGs’ ATR inventory is examined such that the required sample size is determined by the critical month.


Author(s):  
Giuseppe Grande ◽  
Steven Wood ◽  
Auja Ominski ◽  
Jonathan D. Regehr

Traffic volume, often measured in relation to annual average daily traffic (AADT), is a fundamental output of traffic monitoring programs. At continuous count sites, unusual events or counter malfunctions periodically cause data loss, which influences AADT accuracy and precision. This paper evaluates five methods used to calculate AADT values from continuous count data, including the use of a simple average, the commonly adopted method developed by AASHTO (the AASHTO method), and methods that incorporate adjustments to the AASHTO method. The evaluation imposes data removal scenarios designed to simulate real-life causes of data loss to quantify the accuracy and precision improvements provided by these adjustments. Truck traffic data are used to reveal issues arising when volumes are low or when they exhibit unusual temporal patterns. Unlike the AASHTO method, which incorporates a weighted average and an hourly base time period, the FHWA method provides the most accurate and precise results in all data removal scenarios, according to the evaluation. Specifically, when up to 15 days of data are randomly removed, application of the FHWA method can be expected to produce errors within approximately é1.4% of the true AADT value, 95% of the time. Results also demonstrate that including a weighted average improves AADT accuracy primarily, whereas the use of hourly rather than daily count data influences precision. If possible, practitioners contemplating the adoption of the FHWA method should assess its relative advantages within their local context.


2015 ◽  
Vol 764-765 ◽  
pp. 905-909
Author(s):  
Won Ho Suh ◽  
James Anderson ◽  
Angshuman Guin ◽  
Michael Hunter

Traffic counts are one of the fundamental data sources for the Highway Performance Monitoring System (HPMS). Automatic Traffic Recorders (ATRs) are used to provide continuous traffic count coverage at selected locations to estimate annual average daily traffic (AADT). However, ATR data is often unavailable. This paper investigated the feasibility of using Video Detection System (VDS) technology when ATR data is not available. An Android Tablet-based manual traffic counting application was developed to acquire manual count based ground truth data. The performance of VDS was evaluated under various conditions including mounting styles, heights, and roadway offsets. The results indicated that VDS data presents reasonably accurate data, although the data exhibits more variability compared to ATR data.


2000 ◽  
Vol 1719 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Satish C. Sharma ◽  
Pawan Lingras ◽  
Guo X. Liu ◽  
Fei Xu

Estimation of the annual average daily traffic (AADT) for low-volume roads is investigated. Artificial neural networks are compared with the traditional factor approach for estimating AADT from short-period traffic counts. Fifty-five automatic traffic recorder (ATR) sites located on low-volume rural roads in Alberta, Canada, are used as study samples. The results of this study indicate that, when a single 48-h count is used for AADT estimation, the factor approach can yield better results than the neural networks if the ATR sites are grouped appropriately and the sample sites are correctly assigned to various ATR groups. Unfortunately, the current recommended practice offers little guidance on how to achieve the assignment accuracy that may be necessary to obtain reliable AADT estimates from a single 48-h count. The neural network approach can be particularly suitable for estimating AADT from two 48-h counts taken at different times during the counting season. In fact, the 95th percentile error values of about 25 percent as obtained in this study for the neural network models compare favorably with the values reported in the literature for low-volume roads using the traditional factor approach. The advantage of the neural network approach is that classification of ATR sites and sample site assignments to ATR groups are not required. The analysis of various groups of low-volume roads presented also leads to a conclusion that, when defining low-volume roads from a traffic monitoring point of view, it is not likely to matter much whether the AADT on the facility is less than 500 vehicles, less than 750 vehicles, or less than 1,000 vehicles.


Author(s):  
Xu Zhang ◽  
Mei Chen

Annual average daily traffic (AADT) is a critical input into many transportation applications, particularly safety reporting. For example, the Highway Safety Improvement Program in the U.S. requires states to make AADT data for all public paved roadways accessible by 2026. Because collecting traffic counts on every network segment is prohibitively expensive, a method capable of accurately estimating AADT on unmonitored segments is of great value to state DOTs. The ubiquitous probe vehicle data present a great opportunity to this end. This paper presents an enhanced method for statewide AADT estimation by leveraging such data in Kentucky. The use of the probe data is explored in two ways. First, an annual average daily probes (AADP) variable is derived from hourly probe counts; second, a betweenness centrality (BC) variable is calculated using probe speeds. Including both variables and using the random forest model results in model performance that exceeds those previously reported for statewide applications. Incorporating AADP and BC improves the accuracy of AADT estimates by 30%–37% for all roads and 23%–43% for highways in functional classes 5–7, compared with only using sociodemographic and roadway characteristics. These results demonstrate the value of the probe data for enhancing AADT estimation. The analysis further shows that on roadways having more than 53 AADP or an average of 2.2 probe counts per hour, the median and the mean absolute percent errors are below 20% and 25%, respectively. These findings have practical implications for state DOTs wanting to maximize the utility of probe vehicle data.


Sign in / Sign up

Export Citation Format

Share Document