ASIC design for the efficient computation of line spectral frequencies using Chebyshev polynomial series

Author(s):  
David L. Reynolds ◽  
Linda M. Head ◽  
Ravi P. Ramachandran
2013 ◽  
Vol 80 (2) ◽  
Author(s):  
D. Zhou ◽  
S. H. Lo

The three-dimensional (3D) free vibration of twisted cylinders with sectorial cross section or a radial crack through the height of the cylinder is studied by means of the Chebyshev–Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. A simple coordinate transformation is applied to map the twisted cylindrical domain into a normal cylindrical domain. The product of a triplicate Chebyshev polynomial series along with properly defined boundary functions is selected as the admissible functions. An eigenvalue matrix equation can be conveniently derived through a minimization process by the Rayleigh–Ritz method. The boundary functions are devised in such a way that the geometric boundary conditions of the cylinder are automatically satisfied. The excellent property of Chebyshev polynomial series ensures robustness and rapid convergence of the numerical computations. The present study provides a full vibration spectrum for thick twisted cylinders with sectorial cross section, which could not be determined by 1D or 2D models. Highly accurate results presented for the first time are systematically produced, which can serve as a benchmark to calibrate other numerical solutions for twisted cylinders with sectorial cross section. The effects of height-to-radius ratio and twist angle on frequency parameters of cylinders with different subtended angles in the sectorial cross section are discussed in detail.


10.1558/37291 ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 242-263
Author(s):  
Stefano Rastelli ◽  
Kook-Hee Gil

This paper offers a new insight into GenSLA classroom research in light of recent developments in the Minimalist Program (MP). Recent research in GenSLA has shown how generative linguistics and acquisition studies can inform the language classroom, mostly focusing on what linguistic aspects of target properties should be integrated as a part of the classroom input. Based on insights from Chomsky’s ‘three factors for language design’ – which bring together the Faculty of Language, input and general principles of economy and efficient computation (the third factor effect) for language development – we put forward a theoretical rationale for how classroom research can offer a unique environment to test the learnability in L2 through the statistical enhancement of the input to which learners are exposed.


2016 ◽  
Vol 63 (4) ◽  
pp. 1-60 ◽  
Author(s):  
Fedor V. Fomin ◽  
Daniel Lokshtanov ◽  
Fahad Panolan ◽  
Saket Saurabh

2021 ◽  
Vol 7 (3) ◽  
pp. 41
Author(s):  
Emre Baspinar ◽  
Luca Calatroni ◽  
Valentina Franceschi ◽  
Dario Prandi

We consider Wilson-Cowan-type models for the mathematical description of orientation-dependent Poggendorff-like illusions. Our modelling improves two previously proposed cortical-inspired approaches, embedding the sub-Riemannian heat kernel into the neuronal interaction term, in agreement with the intrinsically anisotropic functional architecture of V1 based on both local and lateral connections. For the numerical realisation of both models, we consider standard gradient descent algorithms combined with Fourier-based approaches for the efficient computation of the sub-Laplacian evolution. Our numerical results show that the use of the sub-Riemannian kernel allows us to reproduce numerically visual misperceptions and inpainting-type biases in a stronger way in comparison with the previous approaches.


Sign in / Sign up

Export Citation Format

Share Document