High-speed directional coupler modulator with velocity-matched electrode structure

Author(s):  
M. Yu ◽  
A. Gopinath
1984 ◽  
Vol 5 (1) ◽  
Author(s):  
F. Auracher ◽  
D. Schicketanz ◽  
K.-H. Zeitler

SummaryWe report on a very fast (≥ 6 Gbit/s) Δβ-reversal directional-coupler modulator with low insertion loss (2 dB) for 1.3 μm wavelength operation. The design of the modulator permits easy and reproducible fabrication.


2016 ◽  
Vol 30 (06) ◽  
pp. 1650063 ◽  
Author(s):  
Jingwen Sun ◽  
Jian Sun ◽  
Yunji Yi ◽  
Lucheng Qv ◽  
Shiqi Sun ◽  
...  

A low-cost and high-speed electro-optic (EO) switch using the guest–host EO material Disperse Red 1/Polymethyl Methacrylate (DR1/PMMA) was designed and fabricated. The DR1/PMMA material presented a low processing cost, an excellent photostability and a large EO coefficient of 13.1 pm/V. To improve the performance of the switch, the in-plane buried electrode structure was introduced in the polymer Mach–Zehnder waveguide to improve the poling and modulating efficiency. The characteristic parameters of the waveguide and the electrodes were carefully designed and the fabrication process was strictly controlled. Under 1550 nm, the insertion loss of the device was 12.7 dB. The measured switching rise time and fall time of the switch were 50.00 ns and 54.29 ns, respectively.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000862-000867
Author(s):  
Masaru Morita ◽  
Toshiya Akamatsu ◽  
Nobuhiro Imaizumi ◽  
Seiki Sakuyama

As demands accelerate for high density, high speed transmission and low power integrated circuits, 3D-ICs with through-silicon via (TSV) is pursued. In the structure of 3D-ICs, the first die is attached to the second die with micro bump, and the second die is attached to the circuit substrate with a C4 solder bump. The electrode structure of the second die is Cu/Ni UBM. The stress of the Ni-B layer is less than that of the Ni-P layer, and the Ni-B layer can suppress stress and die warpage. The purposes of our study are to clarify the difference in the barrier properties of the Ni-B UBM and Ni-P under bump metal (UBM) and the relevance of the barrier properties of Ni UBM and intermetallic compound (IMC) growth. It was found that an electroless Ni-B plating layer is superior to a Ni-P plating layer for UBM in liquid phase diffusion and in solid phase diffusion, and that a segregated B layer is formed under the IMC layer of a Ni-B land due to reflow soldering. It was estimated that this B layer plays the role of being a barrier layer for solder diffusion.


2007 ◽  
Vol 19 (21) ◽  
pp. 1762-1764 ◽  
Author(s):  
Yu-Chueh Hung ◽  
Soeng Ku Kim ◽  
H. Fetterman ◽  
Jingdong Luo ◽  
A.K-Y. Jen

Sign in / Sign up

Export Citation Format

Share Document