A Flexible AgNPs-PDMS Substrate to Produce Ultrasensitive SERS Detection

Author(s):  
Guanzhou Lin ◽  
Kenan Zhang ◽  
Yun Huang ◽  
Shengxiao Jin ◽  
Tian Kang ◽  
...  
2021 ◽  
pp. 129741
Author(s):  
Yingying Sun ◽  
Wan Li ◽  
Liqing Zhao ◽  
Fengyong Li ◽  
Yunfei Xie ◽  
...  

2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


2020 ◽  
Vol 9 (1-2) ◽  
pp. 89-100 ◽  
Author(s):  
Xinyu Hu ◽  
Rui Pan ◽  
Mingyong Cai ◽  
Weijian Liu ◽  
Xiao Luo ◽  
...  

AbstractEvaporation concentration of target analytes dissolved in a water droplet based on superhydrophobic surfaces could be able to break the limits for sensitive trace substance detection techniques (e.g. SERS) and it is promising in the fields such as food safety, eco-pollution, and bioscience. In the present study, polytetrafluoroethylene (PTFE) surfaces were processed by femtosecond laser and the corresponding processing parameter combinations were optimised to obtain surfaces with excellent superhydrophobicity. The optimal parameter combination is: laser power: 6.4 W; scanning spacing: 40 μm; scanning number: 1; and scanning path: 90 degree. For trapping and localising droplets, a tiny square area in the middle of the surface remained unprocessed for each sample. The evaporation and concentration processes of droplets on the optimised surfaces were performed and analyzed, respectively. It is shown that the droplets with targeted solute can successfully collect all solute into the designed trapping areas during evaporation process on our laser fabricated superhydrophobic surface, resulting in detection domains with high solute concentration for SERS characterisation. It is shown that the detected peak intensity of rhodamine 6G with a concentration of 10−6m in SERS characterisation can be obviously enhanced by one or two orders of magnitude on the laser fabricated surfaces compared with that of the unprocessed blank samples.


Small ◽  
2021 ◽  
pp. 2100755
Author(s):  
Sara Gullace ◽  
Verónica Montes‐García ◽  
Victor Martín ◽  
David Larios ◽  
Valentina Girelli Consolaro ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (16) ◽  
pp. 9518-9527
Author(s):  
Iván A. Ramos ◽  
L. M. León Hilario ◽  
María L. Pedano ◽  
Andres A. Reynoso

Designs with gold covering far from the gap area applied on nanorod-dimer antennas can enable hybrid electrical and SERS detection. Simulations show promising and robust increasement of the enhancement factor with respect to the uncovered dimer.


2021 ◽  
Vol 544 ◽  
pp. 148908
Author(s):  
Jihua Xu ◽  
Yuan Si ◽  
Zhen Li ◽  
Shouzhen Jiang ◽  
Xianwu Xiu ◽  
...  

2014 ◽  
Vol 46 (1) ◽  
pp. 54-58 ◽  
Author(s):  
Ran Li ◽  
Peipei Liu ◽  
Shanshan Shen ◽  
Haiyang Wang ◽  
Haiming Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document