Real-time closed-loop FES control of muscle activation with evoked EMG feedback

Author(s):  
Zhan Li ◽  
Mitsuhiro Hayashibe ◽  
David Andreu ◽  
David Guiraud
2018 ◽  
Vol 28 (06) ◽  
pp. 1750063 ◽  
Author(s):  
Zhan Li ◽  
David Guiraud ◽  
David Andreu ◽  
Anthony Gelis ◽  
Charles Fattal ◽  
...  

Functional electrical stimulation (FES) is a neuroprosthetic technique to help restore motor function of spinal cord-injured (SCI) patients. Through delivery of electrical pulses to muscles of motor-impaired subjects, FES is able to artificially induce their muscle contractions. Evoked electromyography (eEMG) is used to record such FES-induced electrical muscle activity and presents a form of [Formula: see text]-wave. In order to monitor electrical muscle activity under stimulation and ensure safe stimulation configurations, closed-loop FES control with eEMG feedback is needed to be developed for SCI patients who lose their voluntary muscle contraction ability. This work proposes a closed-loop FES system for real-time control of muscle activation on the triceps surae and tibialis muscle groups through online modulating pulse width (PW) of electrical stimulus. Subject-specific time-variant muscle responses under FES are explicitly reflected by muscle excitation model, which is described by Hammerstein system with its input and output being, respectively, PW and eEMG. Model predictive control is adopted to compute the PW based on muscle excitation model which can online update its parameters. Four muscle activation patterns are provided as desired control references to validate the proposed closed-loop FES control paradigm. Real-time experimental results on three able-bodied subjects and five SCI patients in clinical environment show promising performances of tracking the aforementioned reference muscle activation patterns based on the proposed closed-loop FES control scheme.


2005 ◽  
Author(s):  
Harry Funk ◽  
Robert Goldman ◽  
Christopher Miller ◽  
John Meisner ◽  
Peggy Wu

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5209 ◽  
Author(s):  
Andrea Gonzalez-Rodriguez ◽  
Jose L. Ramon ◽  
Vicente Morell ◽  
Gabriel J. Garcia ◽  
Jorge Pomares ◽  
...  

The main goal of this study is to evaluate how to optimally select the best vibrotactile pattern to be used in a closed loop control of upper limb myoelectric prostheses as a feedback of the exerted force. To that end, we assessed both the selection of actuation patterns and the effects of the selection of frequency and amplitude parameters to discriminate between different feedback levels. A single vibrotactile actuator has been used to deliver the vibrations to subjects participating in the experiments. The results show no difference between pattern shapes in terms of feedback perception. Similarly, changes in amplitude level do not reflect significant improvement compared to changes in frequency. However, decreasing the number of feedback levels increases the accuracy of feedback perception and subject-specific variations are high for particular participants, showing that a fine-tuning of the parameters is necessary in a real-time application to upper limb prosthetics. In future works, the effects of training, location, and number of actuators will be assessed. This optimized selection will be tested in a real-time proportional myocontrol of a prosthetic hand.


2021 ◽  
Author(s):  
Dillon Huffman ◽  
Asma'a Ajwad ◽  
Farid Yaghouby ◽  
Bruce F O’Hara ◽  
Sridhar Sunderam
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document