Numerical simulation of a submerged wave energy converter under irregular wave conditions

Author(s):  
Victoria Gomez ◽  
Raul Guanche ◽  
Cesar Vidal ◽  
Irene Eguinoa
Author(s):  
Yuanrui Sang ◽  
H. Bora Karayaka ◽  
Yanjun Yan ◽  
James Z. Zhang ◽  
Eduard Muljadi ◽  
...  

2021 ◽  
Vol 222 ◽  
pp. 108619
Author(s):  
Milad Zabihi ◽  
Said Mazaheri ◽  
Masoud Montazeri Namin ◽  
Ahmad Rezaee Mazyak

2005 ◽  
Vol 128 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Gaelle Duclos ◽  
Aurelien Babarit ◽  
Alain H. Clément

Considered as a source of renewable energy, wave is a resource featuring high variability at all time scales. Furthermore wave climate also changes significantly from place to place. Wave energy converters are very often tuned to suit the more frequent significant wave period at the project site. In this paper we show that optimizing the device necessitates accounting for all possible wave conditions weighted by their annual occurrence frequency, as generally given by the classical wave climate scatter diagrams. A generic and very simple wave energy converter is considered here. It is shown how the optimal parameters can be different considering whether all wave conditions are accounted for or not, whether the device is controlled or not, whether the productive motion is limited or not. We also show how they depend on the area where the device is to be deployed, by applying the same method to three sites with very different wave climate.


2019 ◽  
Vol 139 ◽  
pp. 538-550 ◽  
Author(s):  
Shaohui Yang ◽  
Hongzhou He ◽  
Hu Chen ◽  
Yongqing Wang ◽  
Hui Li ◽  
...  

2016 ◽  
Vol 693 ◽  
pp. 484-490
Author(s):  
Ying Xue Yao ◽  
Hai Long Li ◽  
Jin Ming Wu ◽  
Liang Zhou

Duck wave energy converter has the advantages of high conversion efficiency, simple construction, low cost relative to other wave power device. In the paper, the numerical simulation of the response of the converter was calculated by the AQWA software which based on the three dimensional potential flow theories. The results show that the pitch angle appear the peak when the incident wave frequency is 1rad/s and the maximum of the pitch angle come out as the linear wave normally incident the duck body, which means duck wave energy converter can absorb more wave energy in this angular frequency. The above research can provide reference for the design of the duck wave energy converter.


Author(s):  
Takeshi Kamio ◽  
Makoto Iida ◽  
Chuichi Arakawa

The purpose of this study is the numerical simulation and control optimization of a wave energy converter to estimate the power at a test site in the Izu Islands. In Japan, ocean energy is once again being seriously considered; however, since there are many inherent problems due to severe conditions such as the strong swells and large waves, estimations are important when designing such devices. The numerical simulation method in this study combines the wave interaction analysis software WAMIT and an in-house time-domain simulation code using the Newmark-β method, and introduces approximate complex-conjugate control into the code. The optimized parameters were assessed for a regular sine wave and an irregular wave with a typical wave spectrum. With the optimized parameters, average and maximum output power were estimated for the observed wave data at the test site. The results show a more than 100 kW average power output and a several times larger maximum power output.


2020 ◽  
Vol 8 (4) ◽  
pp. 289 ◽  
Author(s):  
Vincent S. Neary ◽  
Seongho Ahn ◽  
Bibiana E. Seng ◽  
Mohammad Nabi Allahdadi ◽  
Taiping Wang ◽  
...  

Best practices and international standards for determining n-year return period extreme wave (sea states) conditions allow wave energy converter designers and project developers the option to apply simple univariate or more complex bivariate extreme value analysis methods. The present study compares extreme sea state estimates derived from univariate and bivariate methods and investigates the performance of spectral wave models for predicting extreme sea states at buoy locations within several regional wave climates along the US East and West Coasts. Two common third-generation spectral wave models are evaluated, a WAVEWATCH III® model with a grid resolution of 4 arc-minutes (6–7 km), and a Simulating WAves Nearshore model, with a coastal resolution of 200–300 m. Both models are used to generate multi-year hindcasts, from which extreme sea state statistics used for wave conditions characterization can be derived and compared to those based on in-situ observations at National Data Buoy Center stations. Comparison of results using different univariate and bivariate methods from the same data source indicates reasonable agreement on average. Discrepancies are predominantly random. Large discrepancies are common and increase with return period. There is a systematic underbias for extreme significant wave heights derived from model hindcasts compared to those derived from buoy measurements. This underbias is dependent on model spatial resolution. However, simple linear corrections can effectively compensate for this bias. A similar approach is not possible for correcting model-derived environmental contours, but other methods, e.g., machine learning, should be explored.


2014 ◽  
Vol 64 ◽  
pp. 132-143 ◽  
Author(s):  
M. Anbarsooz ◽  
M. Passandideh-Fard ◽  
M. Moghiman

Sign in / Sign up

Export Citation Format

Share Document