Low frequency responses of spherical and cylindrical pressure-gradient hydrophones due to adjacent turbulent pressure fluctuations

Author(s):  
S. Lee
1986 ◽  
Vol 108 (3) ◽  
pp. 308-314 ◽  
Author(s):  
M. A. Z. Hasan ◽  
M. J. Casarella ◽  
E. P. Rood

The flow and wall-pressure field around a wing-body junction has been experimentally investigated in a quiet, low-turbulence wind tunnel. Measurements were made along the centerline in front of the wing and along several spanwise locations. The flow field data indicated that the strong adverse pressure gradient on the upstream centerline causes three-dimensional flow separation at approximately one wing thickness upstream and this induced the formation of the horseshoe root vortex which wrapped around the wing and became deeply embedded within the boundary layer. The wall-pressure fluctuations were measured for their spectral content and the data indicate that the effect of the adverse pressure gradient is to increase the low-frequency content of the wall pressure and to decrease the high-frequency content. The wall pressure data in the separated region, which is dominated by the horseshoe vortex, shows a significant increase in the low-frequency content and this characteristic feature prevails around the corner of the wing. The outer edge of the horseshoe vortex is clearly identified by the locus of maximum values of RMS wall pressure.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


2014 ◽  
Vol 660 ◽  
pp. 799-803
Author(s):  
Edwar Yazid ◽  
M.S. Liew ◽  
Setyamartana Parman ◽  
V.J. Kurian ◽  
C.Y. Ng

This work presents an approachto predict the low frequency and wave frequency responses (LFR and WFR) of afloating structure using Kalman smoother adaptive filters based time domain Volterramodel. This method utilized time series of a measured wave height as systeminput and surge motion as system output and used to generate the linear andnonlinear transfer function (TFs). Based on those TFs, predictions of surgemotion in terms of LFR and WFR were carried out in certain frequency ranges ofwave heights. The applicability of the proposed method is then applied in ascaled 1:100 model of a semisubmersible prototype.


2021 ◽  
Vol 263 (1) ◽  
pp. 5650-5663
Author(s):  
Hasan Kamliya Jawahar ◽  
Syamir Alihan Showkat Ali ◽  
Mahdi Azarpeyvand

Experimental measurements were carried out to assess the aeroacoustic characteristics of a 30P30N high-lift device, with particular attention to slat tonal noise. Three different types of slat modifications, namely slat cove filler, serrated slat cusp, and slat finlets have been experimentally examined. The results are presented for an angle of attack of α = 18 at a free-stream velocity of U = 30 m/s, which corresponds to a chord-based Reynolds number of Re = 7 x 10. The unsteady surface pressure near the slat region and far-field noise were made simultaneously to gain a deeper understanding of the slat noise generation mechanisms. The nature of the low-frequency broadband hump and the slat tones were investigated using higher-order statistical approaches for the baseline 30P30N and modified slat configurations. Continuous wavelet transform of the unsteady surface pressure fluctuations along with secondary wavelet transform of the broadband hump and tones were carried out to analyze the intermittent events induced by the tone generating resonant mechanisms. Stochastic analysis of the wavelet coefficient modulus of the surface pressure fluctuations was also carried out to demonstrate the inherent differences of different tonal frequencies. An understanding into the nature of the noise generated from the slat will help design the new generation of quite high-lift devices.


Sign in / Sign up

Export Citation Format

Share Document