The Opportunities and Constraints in using Cost-Effective Satellite Remote Sensing for Biodiversity Monitoring

Author(s):  
W. Crosse
2015 ◽  
Vol 30 ◽  
pp. 207-214 ◽  
Author(s):  
Paola Mairota ◽  
Barbara Cafarelli ◽  
Raphael K. Didham ◽  
Francesco P. Lovergine ◽  
Richard M. Lucas ◽  
...  

2020 ◽  
Author(s):  
Duccio Rocchini

<p><span>Assessing biodiversity from field-based data is difficult for a number of practical reasons: (i) establishing the total number of sampling units to be investigated and the sampling design (e.g. systematic, random, stratified) can be difficult; (ii) the choice of the sampling design can affect the results; and (iii) defining the focal population of interest can be challenging. Satellite remote sensing is one of the most cost-effective and comprehensive approaches to identify biodiversity hotspots and predict changes in species composition. This is because, in contrast to field-based methods, it allows for complete spatial coverages of the Earth's surface under study over a short period of time. Furthermore, satellite remote sensing provides repeated measures, thus making it possible to study temporal changes in biodiversity. While taxonomic diversity measures have long been established, problems arising from abundance related measures have not been yet disentangled. Moreover, little has been done to account for functional diversity besides taxonomic diversity measures. The aim of this talk is to propose robust measures of remotely sensed heterogeneity to perform exploratory analysis for the detection of hotspots of taxonomic and functional diversity of plant species.</span></p>


Author(s):  
Nathalie Pettorelli

This chapter explores how satellite-based approaches can be used as a cost-effective method to support monitoring efforts of protected areas, offering a cheap, verifiable way to identify areas of concern at a global scale, and to support managers in their effort to design and apply adaptive management strategies. Because protected areas can differ in terms of management needs and landscape/seascape access, the chapter starts with a quick introduction to categories of protected areas. Where to set new protected areas is one of the key questions faced by decision makers in need of meeting current biodiversity targets, and the second part of this work explores how satellite remote sensing can inform such a choice. Climatic conditions can significantly impact protected areas’ biodiversity, and the third section of this chapter briefly assesses common ways to derive information about local climatic anomalies from satellite data. The last sections of this chapter discuss the use of satellite data to assess effectiveness, and introduce the Digital Observatory of Protected Areas.


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


Sign in / Sign up

Export Citation Format

Share Document