Optical Network Traffic Prediction Based on Graph Convolutional Neural Networks

Author(s):  
Yihan Gui ◽  
Danshi Wang ◽  
Luyao Guan ◽  
Min Zhang
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1578
Author(s):  
Daniel Szostak ◽  
Adam Włodarczyk ◽  
Krzysztof Walkowiak

Rapid growth of network traffic causes the need for the development of new network technologies. Artificial intelligence provides suitable tools to improve currently used network optimization methods. In this paper, we propose a procedure for network traffic prediction. Based on optical networks’ (and other network technologies) characteristics, we focus on the prediction of fixed bitrate levels called traffic levels. We develop and evaluate two approaches based on different supervised machine learning (ML) methods—classification and regression. We examine four different ML models with various selected features. The tested datasets are based on real traffic patterns provided by the Seattle Internet Exchange Point (SIX). Obtained results are analyzed using a new quality metric, which allows researchers to find the best forecasting algorithm in terms of network resources usage and operational costs. Our research shows that regression provides better results than classification in case of all analyzed datasets. Additionally, the final choice of the most appropriate ML algorithm and model should depend on the network operator expectations.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2063 ◽  
Author(s):  
Xiangdong Ran ◽  
Zhiguang Shan ◽  
Yufei Fang ◽  
Chuang Lin

Deep learning approaches have been recently applied to traffic prediction because of their ability to extract features of traffic data. While convolutional neural networks may improve the predictive accuracy by transiting traffic data to images and extracting features in the images, the convolutional results can be improved by using the global-level representation that is a direct way to extract features. The time intervals are not considered as aspects of convolutional neural networks for traffic prediction. The attention mechanism may adaptively select a sequence of regions and only process the selected regions to better extract features when aspects are considered. In this paper, we propose the attention mechanism over the convolutional result for traffic prediction. The proposed method is based on multiple links. The time interval is considered as the aspect of attention mechanism. Based on the dataset provided by Highways England, the experimental results show that the proposed method can achieve better accuracy than the baseline methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yongjin Hu ◽  
Jin Tian ◽  
Jun Ma

Network traffic classification technologies could be used by attackers to implement network monitoring and then launch traffic analysis attacks or website fingerprint attacks. In order to prevent such attacks, a novel way to generate adversarial samples of network traffic from the perspective of the defender is proposed. By adding perturbation to the normal network traffic, a kind of adversarial network traffic is formed, which will cause misclassification when the attackers are implementing network traffic classification with deep convolutional neural networks (CNN) as a classification model. The paper uses the concept of adversarial samples in image recognition for reference to the field of network traffic classification and chooses several different methods to generate adversarial samples of network traffic. The experiment, in which the LeNet-5 CNN is selected as a classification model used by attackers and Vgg16 CNN is selected as the model to test the transferability of the adversarial network traffic generated, shows the effect of the adversarial network traffic samples.


Sign in / Sign up

Export Citation Format

Share Document