Focusing of relativistic electron bunches at the wake-field excitation in plasma

Author(s):  
Ya.B. Fainberg ◽  
N.I. Ayzatsky ◽  
V.A. Balakirev ◽  
A.K. Berezin ◽  
A.N. Dovbnya ◽  
...  
2001 ◽  
Vol 19 (4) ◽  
pp. 597-604 ◽  
Author(s):  
V.A. BALAKIREV ◽  
V.I. KARAS' ◽  
I.V. KARAS' ◽  
V.D. LEVCHENKO

High-amplitude plasma wake waves are excited by high-density relativistic electron bunches (REB) moving in a plasma. The wake-fields can be used to accelerate charged particles, to serve as electrostatic wigglers in plasma free-electron lasers (FEL), and also can find many other applications. The electromagnetic fields in the region occupied by the bunch control the dynamics of the bunch itself. This paper presents the results of 2.5-dimensional numerical simulation of the modulation of a long REB in a plasma, the excitation of wake-fields by bunches in a plasma, in particular, in magnetoactive plasma. The previous one-dimensional study has shown that the density-profile modulation of a long bunch moving in plasma results in the growth of the coherent wake-wave amplitude. The bunch modulation occurs at the plasma frequency. The present study is concerned with the REB motion, taking into account the plasma and REB nonlinearities. It is demonstrated that the nonlinear REB/plasma dynamics exerts primary effect on both the REB self-modulation and the wake-field excitation by the bunches formed. We have demonstrated that a multiple excess of the accelerated bunch energy εmax over the energy of the exciting REB is possible in a magnetoactive plasma for a certain relationship between the parameters of the “plasma–bunch–magnetic field” system (owing to a hybrid volume–surface character of REB-excited wake-fields).


2004 ◽  
Vol 22 (4) ◽  
pp. 423-429 ◽  
Author(s):  
P. TOMASSINI ◽  
M. GALIMBERTI ◽  
A. GIULIETTI ◽  
D. GIULIETTI ◽  
L.A. GIZZI ◽  
...  

Laser Wake Field Acceleration of relativistic electron bunches is a promising method to produce a large amount of energetic particles with table top equipment. One of the possible methods to inject particles in the appropriate acceleration phase of the wake behind the pulse takes advantage of the partial longitudinal breaking of the wake crests across a density downramp. In this paper results of 2.5D PIC simulations, showing the production of an electron bunch with reduced energy spread, are reported. Also, a possible method to produce the required plasma density transition by laser explosion of a suitable couple of thin foils is discussed.


2004 ◽  
Vol 22 (4) ◽  
pp. 383-392 ◽  
Author(s):  
V. A. BALAKIREV ◽  
I. V. KARAS‘ ◽  
V. I. KARAS‘ ◽  
V. D. LEVCHENKO ◽  
M. BORNATICI

The results from theoretical and experimental studies, as well as from 2.5-dimensional (2.5-D) numerical simulation of plasma wake field excitation, by either relativistic electron bunch, laser pulse, and the charged particle wake field acceleration are discussed. The results of these investigations make it possible to evaluate the potentialities of the wake field acceleration method and to analyze whether it can serve as a basis for creating a new generation of devices capable of charged particle accelerating at substantially higher (on the order of two to three magnitudes) rates in comparison with those achievable in classical linear high-frequency (resonant) accelerators.


2019 ◽  
pp. 58-62
Author(s):  
K.V. Galaydych ◽  
R.R. Kniaziev ◽  
G.A. Krivonosov ◽  
I.N. Onishchenko ◽  
G.V. Sotnikov

A numerical study of the wakefield excitation in a rectangular dielectric-loaded resonator by a sequence of relativistic electron bunches in the case of non-axial injection is carried out. The effect of the shift of injected bunches on the particle dynamics, as well as on the spatial distribution of the components of the bunch-excited fields, is studied. The current losses of a sequence of relativistic electron bunches due to the particles deposition on the surface of the dielectric is determined.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhan Jin ◽  
Hirotaka Nakamura ◽  
Naveen Pathak ◽  
Yasuo Sakai ◽  
Alexei Zhidkov ◽  
...  

AbstractStaging laser wake-field acceleration is considered to be a necessary technique for developing full-optical jitter-free high energy electron accelerators. Splitting of the acceleration length into several technical parts and with independent laser drivers allows not only the generation of stable, reproducible acceleration fields but also overcoming the dephasing length while maintaining an overall high acceleration gradient and a compact footprint. Temporal and spatial coupling of pre-accelerated electron bunches for their injection in the acceleration phase of a successive laser pulse wake field is the key part of the staging laser-driven acceleration. Here, characterization of the coupling is performed with a dense, stable, narrow energy band of <3% and energy-selectable electron beams with a charge of ~1.6 pC and energy of ~10 MeV generated from a laser plasma cathode. Cumulative focusing of electron bunches in a low-density preplasma, exhibiting the Budker–Bennett effect, is shown to result in the efficient injection of electrons, even with a long distance between the injector and the booster in the laser pulse wake. The measured characteristics of electron beams modified by the booster wake field agree well with those obtained by multidimensional particle-in-cell simulations.


2020 ◽  
Vol 17 (5) ◽  
pp. 055401
Author(s):  
P B Glek ◽  
A A Voronin ◽  
V Ya Panchenko ◽  
A M Zheltikov

Sign in / Sign up

Export Citation Format

Share Document