The Application of Fuzzy Neural Networks in Formation Control for Multi-Robot System

Author(s):  
Yanmin Lei ◽  
Qidan Zhu ◽  
Xin Leng ◽  
Zhibin Feng ◽  
Jihong Song
2018 ◽  
Vol 41 (7) ◽  
pp. 1861-1879 ◽  
Author(s):  
Teh-Lu Liao ◽  
Wei-Shou Chan ◽  
Jun-Juh Yan

This paper presents a distributed adaptive formation control method for uncertain multiple quadrotor systems under a directed graph that characterizes the interaction among the leader and followers. The proposed approach is based on an adaptive dynamic surface control, consensus algorithm and graph theory, where the system uncertainties are approximately modelled by interval type-2 fuzzy neural networks. The adaptive laws of interval type-2 fuzzy neural network parameters are derived from the stability analysis. In this study, the robust stability of the closed-loop system is guaranteed by the Lyapunov theorem, and the leader-follower formation goal can be asymptotically achieved. The developed control scheme is applied to the followers of quadrotor systems for performance evaluations. Simulation results are also provided to compare with the existing methods and reveal the superiority of the proposed adaptive formation controller.


2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2013 ◽  
Vol 33 (9) ◽  
pp. 2566-2569 ◽  
Author(s):  
Zhuanling CUI ◽  
Guoning LI ◽  
Sen LIN

IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Wookyong Kwon ◽  
Yongsik Jin ◽  
Dongyeop Kang ◽  
Sangmoon Lee

2021 ◽  
Vol 11 (2) ◽  
pp. 546
Author(s):  
Jiajia Xie ◽  
Rui Zhou ◽  
Yuan Liu ◽  
Jun Luo ◽  
Shaorong Xie ◽  
...  

The high performance and efficiency of multiple unmanned surface vehicles (multi-USV) promote the further civilian and military applications of coordinated USV. As the basis of multiple USVs’ cooperative work, considerable attention has been spent on developing the decentralized formation control of the USV swarm. Formation control of multiple USV belongs to the geometric problems of a multi-robot system. The main challenge is the way to generate and maintain the formation of a multi-robot system. The rapid development of reinforcement learning provides us with a new solution to deal with these problems. In this paper, we introduce a decentralized structure of the multi-USV system and employ reinforcement learning to deal with the formation control of a multi-USV system in a leader–follower topology. Therefore, we propose an asynchronous decentralized formation control scheme based on reinforcement learning for multiple USVs. First, a simplified USV model is established. Simultaneously, the formation shape model is built to provide formation parameters and to describe the physical relationship between USVs. Second, the advantage deep deterministic policy gradient algorithm (ADDPG) is proposed. Third, formation generation policies and formation maintenance policies based on the ADDPG are proposed to form and maintain the given geometry structure of the team of USVs during movement. Moreover, three new reward functions are designed and utilized to promote policy learning. Finally, various experiments are conducted to validate the performance of the proposed formation control scheme. Simulation results and contrast experiments demonstrate the efficiency and stability of the formation control scheme.


2021 ◽  
Vol 11 (4) ◽  
pp. 1448
Author(s):  
Wenju Mao ◽  
Zhijie Liu ◽  
Heng Liu ◽  
Fuzeng Yang ◽  
Meirong Wang

Multi-robots have shown good application prospects in agricultural production. Studying the synergistic technologies of agricultural multi-robots can not only improve the efficiency of the overall robot system and meet the needs of precision farming but also solve the problems of decreasing effective labor supply and increasing labor costs in agriculture. Therefore, starting from the point of view of an agricultural multiple robot system architectures, this paper reviews the representative research results of five synergistic technologies of agricultural multi-robots in recent years, namely, environment perception, task allocation, path planning, formation control, and communication, and summarizes the technological progress and development characteristics of these five technologies. Finally, because of these development characteristics, it is shown that the trends and research focus for agricultural multi-robots are to optimize the existing technologies and apply them to a variety of agricultural multi-robots, such as building a hybrid architecture of multi-robot systems, SLAM (simultaneous localization and mapping), cooperation learning of robots, hybrid path planning and formation reconstruction. While synergistic technologies of agricultural multi-robots are extremely challenging in production, in combination with previous research results for real agricultural multi-robots and social development demand, we conclude that it is realistic to expect automated multi-robot systems in the future.


Sign in / Sign up

Export Citation Format

Share Document