Complex networks clustering algorithm based on the core influence of the nodes

Author(s):  
Chao Tong ◽  
Jianwei Niu ◽  
Bin Dai ◽  
Jing Peng ◽  
Jinyang Fan
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chao Tong ◽  
Jianwei Niu ◽  
Bin Dai ◽  
Zhongyu Xie

In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster’s core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.


2013 ◽  
Vol 321-324 ◽  
pp. 1939-1942
Author(s):  
Lei Gu

The locality sensitive k-means clustering method has been presented recently. Although this approach can improve the clustering accuracies, it often gains the unstable clustering results because some random samples are employed for the initial centers. In this paper, an initialization method based on the core clusters is used for the locality sensitive k-means clustering. The core clusters can be formed by constructing the σ-neighborhood graph and their centers are regarded as the initial centers of the locality sensitive k-means clustering. To investigate the effectiveness of our approach, several experiments are done on three datasets. Experimental results show that our proposed method can improve the clustering performance compared to the previous locality sensitive k-means clustering.


2014 ◽  
Vol 472 ◽  
pp. 427-431
Author(s):  
Zong Lin Ye ◽  
Hui Cao ◽  
Li Xin Jia ◽  
Yan Bin Zhang ◽  
Gang Quan Si

This paper proposes a novel multi-radius density clustering algorithm based on outlier factor. The algorithm first calculates the density-similar-neighbor-based outlier factor (DSNOF) for each point in the dataset according to the relationship of the density of the point and its neighbors, and then treats the point whose DSNOF is smaller than 1 as a core point. Second, the core points are used for clustering by the similar process of the density based spatial clustering application with noise (DBSCAN) to get some sub-clusters. Third, the proposed algorithm merges the obtained sub-clusters into some clusters. Finally, the points whose DSNOF are larger than 1 are assigned into these clusters. Experiments are performed on some real datasets of the UCI Machine Learning Repository and the experiments results verify that the effectiveness of the proposed model is higher than the DBSCAN algorithm and k-means algorithm and would not be affected by the parameter greatly.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fanrong Meng ◽  
Feng Zhang ◽  
Mu Zhu ◽  
Yan Xing ◽  
Zhixiao Wang ◽  
...  

Community detection in complex networks has become a research hotspot in recent years. However, most of the existing community detection algorithms are designed for the static networks; namely, the connections between the nodes are invariable. In this paper, we propose an incremental density-based link clustering algorithm for community detection in dynamic networks, iDBLINK. This algorithm is an extended version of DBLINK which is proposed in our previous work. It can update the local link community structure in the current moment through the change of similarity between the edges at the adjacent moments, which includes the creation, growth, merging, deletion, contraction, and division of link communities. Extensive experimental results demonstrate that iDBLINK not only has a great time efficiency, but also maintains a high quality community detection performance when the network topology is changing.


2007 ◽  
Vol 2007 ◽  
pp. 1-10
Author(s):  
Zhan Zhang ◽  
Yong Tang ◽  
Shigang Chen ◽  
Ying Jian

Unstructured peer-to-peer networks have gained a lot of popularity due to their resilience to network dynamics. The core operation in such networks is to efficiently locate resources. However, existing query schemes, for example, flooding, random walks, and interest-based shortcut suffer various problems in reducing communication overhead and in shortening response time. In this paper, we study the possible problems in the existing approaches and propose a new hybrid query scheme, which mixes inter-cluster queries and intracluster queries. Specifically, the proposed scheme works by efficiently locating the clusters, sharing similar interests with intercluster queries, and then exhaustively searching the nodes in the found clusters with intracluster queries. To facilitate the scheme, we propose a clustering algorithm to cluster nodes that share similar interests, and a labeling algorithm to explicitly capture the clusters in the underlying overlays. As demonstrated by extensive simulations, our new query scheme can improve the system performance significantly by achieving a better tradeoff among communication overhead, response time, and ability to locate more resources.


Sign in / Sign up

Export Citation Format

Share Document