Improved electrical design capabilities through the use of CAD modeling

Author(s):  
D.G. Brooks ◽  
M. Puckett
Keyword(s):  
2020 ◽  
Vol 1706 ◽  
pp. 012189
Author(s):  
Amol Mangrulkar ◽  
Santosh Rane ◽  
Vivek Sunnapwar
Keyword(s):  

2013 ◽  
Vol 579-580 ◽  
pp. 300-304 ◽  
Author(s):  
Lian Xia ◽  
Da Zhu Li ◽  
Jiang Han

Elliptic family gears are commonly used in non-circular gears, which include elliptic gear, high-order gear, elliptic deformed gear and high-order deformed gear, thereinto high-order deformed gear can include the elliptic family gears through adjust its order and deformed coefficient. Because non-circular gear has different tooth profile in different position of pitch curve and there is difference in the left and right tooth profile of the same gear tooth, thus the CAD modeling of non-circular gear is difficult for these characteristics; but the precise model of non-circular gear has important significance to the realization of numerical control machining, kinematic simulation and relevant mechanical analysis. This paper deduce the corresponding pure rolling mathematical model based on the pure rolling contact theory that cylindrical gear and non-circular gear mesh in the end face, and realize the CAD modeling of non-circular straight and helical gears by letting the cylindrical gear and non-circular gear make solid geometry operation, which is suitable for pitch curve with convex and concave. The non-circular gear shaping methods with equal polar and equal arc length are simulated by setting different discrete polar angles, and the transmission ratio curve and the angular acceleration curve of driven gear are get through the kinematic simulation of gear pair, which realize the transmission performance analysis of elliptic family gear pair. The above research results can be applied to the modeling and kinematic performance analysis of other non-circular gears.


2014 ◽  
Vol 54 ◽  
pp. 51-55 ◽  
Author(s):  
S. Sree Shankar ◽  
Rahul Rai
Keyword(s):  

2021 ◽  
Author(s):  
Xinyi Xiao ◽  
Byeong-Min Roh

Abstract The integration of Topology optimization (TO) and Generative Design (GD) with additive manufacturing (AM) is becoming advent methods to lightweight parts while maintaining performance under the same loading conditions. However, these models from TO or GD are not in a form that they can be easily edited in a 3D CAD modeling system. These geometries are generally in a form with no surface/plane information, thus having non-editable features. Direct fabricate these non-feature-based designs and their inherent characteristics would lead to non-desired part qualities in terms of shape, GD&T, and mechanical properties. Current commercial software always requires a significant amount of manual work by experienced CAD users to generate a feature-based CAD model from non-feature-based designs for AM and performance simulation. This paper presents fully automated shaping algorithms for building parametric feature-based 3D models from non-feature-based designs for AM. Starting from automatically decomposing the given geometry into “formable” volumes, which is defined as a sweeping feature in the CAD modeling system, each decomposed volume will be described with 2D profiles and sweeping directions for modeling. The Boolean of modeled components will be the final parametric shape. The volumetric difference between the final parametric form and the original geometry is also provided to prove the effectiveness and efficiency of this automatic shaping methodology. Besides, the performance of the parametric models is being simulated to testify the functionality.


Author(s):  
Elena-Iulia HUZU ◽  
Ioana COFARU ◽  
Nicolae COFARU
Keyword(s):  

Author(s):  
John M. Hollerbach ◽  
Elaine Cohen ◽  
William Thompson ◽  
Rodney Freier ◽  
David Johnson ◽  
...  

Abstract A network-based real-time control architecture has been developed which integrates a haptic interface (the Sarcos Dextrous Arm Master) with an advanced CAD modeling system (Utah’s Alpha_1). New algorithms have been developed and tested for surface proximity testing, fast updates to local closest point on a surface, and smooth transitions between surfaces. The combination of these new algorithms with the haptic interface and CAD modeling system permits a user to actively touch and manipulate virtual parts as well as passively view them on a CRT screen.


Sign in / Sign up

Export Citation Format

Share Document