Research on the Suppression Strategies of High-frequency Oscillation for MMC-HVDC

Author(s):  
Jichao Tang ◽  
Xiong Du ◽  
Chengmao Du ◽  
Chenghui Tong
PEDIATRICS ◽  
2001 ◽  
Vol 108 (1) ◽  
pp. 212-214
Author(s):  
J. P. Shenai; ◽  
P. Rimensberger; ◽  
U. Thome ◽  
F. Pohlandt; ◽  
P. Rimensberger

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mohammad Habibullah ◽  
Nadarajah Mithulananthan ◽  
Krischonme Bhumkittipich ◽  
Mohammad Amin

2015 ◽  
Vol 113 (7) ◽  
pp. 2840-2844 ◽  
Author(s):  
Pariya Salami ◽  
Maxime Lévesque ◽  
Jean Gotman ◽  
Massimo Avoli

Low-voltage fast (LVF)- and hypersynchronous (HYP)-seizure onset patterns can be recognized in the EEG of epileptic animals and patients with temporal lobe epilepsy. Ripples (80–200 Hz) and fast ripples (250–500 Hz) have been linked to each pattern, with ripples predominating during LVF seizures and fast ripples predominating during HYP seizures in the rat pilocarpine model. This evidence led us to hypothesize that these two seizure-onset patterns reflect the contribution of neural networks with distinct transmitter signaling characteristics. Here, we tested this hypothesis by analyzing the seizure activity induced with the K+ channel blocker 4-aminopyridine (4AP, 4–5 mg/kg ip), which enhances both glutamatergic and GABAergic transmission, or the GABAA receptor antagonist picrotoxin (3–5 mg/kg ip); rats were implanted with electrodes in the hippocampus, the entorhinal cortex, and the subiculum. We found that LVF onset occurred in 82% of 4AP-induced seizures whereas seizures after picrotoxin were always HYP. In addition, high-frequency oscillation analysis revealed that 4AP-induced LVF seizures were associated with higher ripple rates compared with fast ripples ( P < 0.05), whereas picrotoxin-induced seizures contained higher rates of fast ripples compared with ripples ( P < 0.05). These results support the hypothesis that two distinct patterns of seizure onset result from different pathophysiological mechanisms.


1988 ◽  
Vol 75 (5) ◽  
pp. 535-542 ◽  
Author(s):  
Simon H. L. Thomas ◽  
Jackie A. Langford ◽  
Robert J. D. George ◽  
Duncan M. Geddes

1. Oral high-frequency oscillation (OHFO) may have important effects on aerosol deposition in the lungs. In order to investigate these, a technique was devised to measure regional deposition rates of a nebulized radio-labelled aerosol in the lungs during normal tidal breathing. 2. The effect of three frequencies of OHFO on pulmonary aerosol deposition rate (PADR) in four normal subjects and five patients with chronic airways obstruction (CAO) were assessed using the technique. 3. In separate experiments employing three normal subjects, the effect of OHFO was studied on the deposition rate of aerosol on the oropharynx and delivery apparatus, and on the amount and characteristics of aerosol inhaled by the subjects. 4. Total PADR was significantly reduced by OHFO at 8 Hz and 16 Hz in the normal subjects, and by all three frequencies of OHFO in the CAO patients. In the normal subjects, the regional distribution of aerosol deposition was unchanged, but in the CAO patients a larger proportion of total aerosol deposition occurred in peripheral lung. 5. OHFO reduced the oropharyngeal aerosol deposition rate, increased the loss of aerosol to the atmosphere before inhalation, and increased the deposition of aerosol on the delivery apparatus. The end result was a reduction in the amount of aerosol inhaled, and in the particle sizes measured at the mouthpiece. 6. We conclude that OHFO reduces the amount of aerosol inhaled, but may improve peripheral deposition of inhaled aerosol in patients with CAO. This effect may be of value in the clinical administration of nebulized drugs.


Sign in / Sign up

Export Citation Format

Share Document