Internal model control of dc-dc boost converter exhibiting non-minimum phase behavior

Author(s):  
K. Tarakanath ◽  
Sachin Patwardhan ◽  
Vivek Agarwal
Enfoque UTE ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 41-53
Author(s):  
Byron Cajamarca ◽  
Óscar Camacho Quintero ◽  
Danilo Chávez ◽  
Paulo Leica ◽  
Marcelo Pozo

This work presents the application of different schemes to control a non-minimum phase Buck-Boost converter. Three control schemes are used. The first controller presented is a PI controller, the second one is Sliding Mode Control and the third one is a combination of two control schemes, Internal Model Control and Sliding Mode Control. The controllers are designed from a Right-Half Plane Zero (RHPZ) reduced order model. The RHPZ model is converted, using Taylor approximation, in a First Order Plus Dead Time (FOPDT) model and after that, the controllers are obtained. The performance of the SMC-IMC is compared against to a PI controller and a SMC. The simulation results show that SMC-IMC improves the converter response, reducing the chattering and presenting better robustness for load changes


2020 ◽  
pp. 002029402092226
Author(s):  
Shivam Jain ◽  
Yogesh V Hote ◽  
Padmalaya Dehuri ◽  
Deeksha Mittal ◽  
Vishwanatha Siddhartha

In this paper, fractional order internal model control technique is formulated for non-ideal dc–dc buck and boost converter. The fractional order internal model control approach integrates the concept of Commande Robuste d’Ordre Non Entier principle for tuning a fractional order filter with internal model control scheme. The final controller can be expressed as a series combination of proportional integral derivative controller and a fractional order low pass filter. To assess the robustness of the proposed fractional order internal model control scheme, both the servo response and regulatory response of the dc–dc converters are investigated in the presence of disturbances. The efficacy of fractional order internal model control technique is demonstrated via comparison with 2 degrees of freedom internal model control scheme. Furthermore, an experimental validation of fractional order internal model control is conducted on laboratory setup, and a dSPACE 1104 microcontroller is used for hardware implementation. The simulation results and the hardware validation are a testimony to the effectiveness of fractional order internal model control technique.


2015 ◽  
Vol 20 (4) ◽  
pp. 383-394
Author(s):  
Eric Nery Chaves ◽  
Leandro Sousa Vilefort ◽  
Henrique Tannús de Moura Carvalho

2020 ◽  
Vol 53 (2) ◽  
pp. 1677-1683
Author(s):  
K. Ben Jemaa ◽  
P. Kotman ◽  
S. Reimann ◽  
K. Graichen

Sign in / Sign up

Export Citation Format

Share Document