Practical Issues Concerned with Zero sequence component and Harmonic Compensation in Four-Wire systems

Author(s):  
E. Pashajavid ◽  
K. Kanzi ◽  
M. Tavakoli Bina
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2052
Author(s):  
Odair de Barros Junior ◽  
Thiago Silva Amorim ◽  
Daniel Carletti ◽  
Anselmo Frizera Neto ◽  
Lucas Frizera Encarnação

The increasing number of electronic loads has introduced several harmonics into the power system, leading to a growth in the importance of filters intended for their mitigation. Thus, it is important to have the knowledge to select operational limits of each new filter connected in the power grid. Likewise, obtaining these harmonics requires robust tracking systems that provide enough information for better filter selectivity. This paper proposes a selective harmonic active filter control based on Fourier linear combiner (FLC) algorithms for a three-phase electrical grid. The presented system is enabled to track each harmonic order and sequence components with great robustness, extracting positive, negative, and zero sequence information from each harmonic for further filter selectivity. It also proposes a new strategy to improve the FLC-based algorithms in tracking frequencies in power grid disturbances. Simulated results of the algorithm and a real-time simulation of a selective active power filter (SAPF) were presented, validating the performance in several scenarios.


2015 ◽  
Vol 16 (5) ◽  
pp. 451-472 ◽  
Author(s):  
Alireza Fereidouni ◽  
Mohammad A. S. Masoum ◽  
Moayed Moghbel

Abstract Among the four basic dynamic voltage restorer (DVR) topologies, the network-side shunt-connected DVR (NSSC-DVR) has a relatively poor performance and is investigated in this paper. A new configuration is proposed and implemented for NSSC-DVR to enhance its performance in compensating (un)symmetrical deep and long voltage sags and mitigate voltage harmonics. The enhanced NSSC-DVR model includes a three-phase half-bridge semi-controlled network-side-shunt-connected rectifier and a three-phase full-bridge series-connected inverter implemented with a back-to-back configuration through a bidirectional buck-boost converter. The network-side-shunt-connected rectifier is employed to inject/draw the required energy by NSSC-DVR to restore the load voltage to its pre-fault value under sag/swell conditions. The buck-boost converter is responsible for maintaining the DC-link voltage of the series-connected inverter at its designated value in order to improve the NSSC-DVR capability in compensating deep and long voltage sags/swells. The full-bridge series-connected inverter permits to compensate unbalance voltage sags containing zero-sequence component. The harmonic compensation of the load voltage is achieved by extracting harmonics from the distorted network voltage using an artificial neural network (ANN) method called adaptive linear neuron (Adaline) strategy. Detailed simulations are performed by SIMULINK/MATLAB software for six case studies to verify the highly robustness of the proposed NSSC-DVR model under various conditions.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2629 ◽  
Author(s):  
Amirreza Naderipour ◽  
Zulkurnain Abdul-Malek ◽  
Mohammad Reza Miveh ◽  
Mohammad Jafar Hadidian Moghaddam ◽  
Akhtar Kalam ◽  
...  

Mitigation of harmonics for a grid-connected inverter is an important element to stabilize the control and the quality of current injected into the grid. This paper deals with the control method of a three-phase Grid-Connected Inverter (GCI) Photovoltaic (PV) system, which is based on the zero-sequence current adjuster. The proposed method is capable of removing the harmonic current and voltage without using any active and passive filters and without the knowledge of the microgrid topology and also impedances of distribution bands and loading conditions. This concept is adopted for the control of a Distributed Generator (DG) in the form of grid-connected inverter. The proposed control can be applied to the grid connected inverter of the PV. The fast dynamic response, simple design, stability, and fast transient response are the new main features of the proposed design. This paper also analyzes the circuit configuration effects on the grid connected inverter capability. The proposed control is used to demonstrate the improved stability and performance.


2015 ◽  
Vol 9 (1) ◽  
pp. 253-262
Author(s):  
Liu Zhongfu ◽  
Zhang Junxing ◽  
Shi Lixin ◽  
Yang Yaning

As for the wide application of arc suppression coil to the grounding in neutral point of mine high voltage grid, grid leakage fault rules and harmonic characteristics of the neutral point grounding system through arc suppression coil are analyzed, the selective leakage protection program “zero-sequence voltage starts, fifth harmonics of grid zerosequence voltage and zero-sequence current are extracted for phase comparison” is proposed, and corresponding fifth harmonic extraction circuit and power direction discrimination circuit are designed. The experimental results show that the protective principle applies not only to the neutral point insulated power supply system, but also to the power supply system in which neutral point passes arc suppression coil, which can solve selective leakage protection problems under different neutral grounding ways, improving the reliability of selective leakage and guaranteeing the stability of the action value.


Author(s):  
Weihao Hu ◽  
Yue Wang ◽  
Weizheng Yao ◽  
Hailong Zhang ◽  
Jinlong Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document