A comprehensive power analysis of induction heating power supply system using multilevel neutral point clamped inverter with optimum control algorithm

Author(s):  
Bashar Mohammed Flayyih ◽  
Mohammed Zaki Ahmed ◽  
Stuart MacVeigh
2015 ◽  
Vol 9 (1) ◽  
pp. 253-262
Author(s):  
Liu Zhongfu ◽  
Zhang Junxing ◽  
Shi Lixin ◽  
Yang Yaning

As for the wide application of arc suppression coil to the grounding in neutral point of mine high voltage grid, grid leakage fault rules and harmonic characteristics of the neutral point grounding system through arc suppression coil are analyzed, the selective leakage protection program “zero-sequence voltage starts, fifth harmonics of grid zerosequence voltage and zero-sequence current are extracted for phase comparison” is proposed, and corresponding fifth harmonic extraction circuit and power direction discrimination circuit are designed. The experimental results show that the protective principle applies not only to the neutral point insulated power supply system, but also to the power supply system in which neutral point passes arc suppression coil, which can solve selective leakage protection problems under different neutral grounding ways, improving the reliability of selective leakage and guaranteeing the stability of the action value.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4053 ◽  
Author(s):  
Zhixuan Gao ◽  
Qiwei Lu ◽  
Cong Wang ◽  
Junqing Fu ◽  
Bangbang He

This paper presents a modified power supply system based on the current alternating current (AC)-fed railways with neutral zones that can further improve the eco-friendliness and smart level of railways. The modified system complements the existing infrastructure with additional energy-storage-based smart electrical infrastructure. This infrastructure comprises power electronic devices with energy storage system connected in parallel to both sides of each neutral zone in the traction substations, power electronic devices connected in parallel to both sides of each neutral zone in section posts, and an energy management system. The description and functions of such a modified system are outlined in this paper. The system allows for the centralized- and distributed-control of different functions via an energy management system. In addition, a control algorithm is proposed, based on the modified system for regenerative braking energy utilization. This would ensure that all the regenerative braking energy in the whole railway electrical system is used more efficiently. Finally, a modified power supply system with eight power supply sections is considered to be a case study; furthermore, the advantages of the proposed system and the effectiveness of the proposed control algorithm are verified.


2019 ◽  
Vol 260 ◽  
pp. 02007
Author(s):  
Yonghong Deng ◽  
Zhishan Liang

Electrical submersible pump (ESP) require remote operation of inverter via a long cable. The conventional control algorithm of inverter does not operate effectively. In this paper, a new power supply scheme is proposed, namely: Inverter - Motor - Generator - Transformer – Long Cable - ESP power supply program, referred to as IMGEESP power supply system. Based on the analysis of the IMGEESP, the model of the long cable was established, the functional relationship between inverter and smart power of the IMGEESP was deduced, so that the voltage model is constructed. The frequency converter and the intelligent power supply of IMGEESP are coordinated and controlled according to the speed command of the ESP and the cable length. Simulation results verifies the correctness and effectiveness of the proposed IMGEESP.


Author(s):  
Shu Cheng ◽  
Chang Liu ◽  
Jianxiang Tang ◽  
Tianjian Yu ◽  
Kaidi Li

Co-phase power supply is one of the key technologies to solve the technical bottlenecks such as electrical phase separation zone, poor power quality and defects in structure and control algorithms in traditional traction power supply systems and single co-phase power supply schemes, and an inevitable way to realize the development of electrified railways in the direction of safety, high speed and heavy load. Based on the single co-phase power supply technology, a novel quadruple co-phase power supply scheme with negative sequence elimination and to suppress reactive power and harmonic better for the two aspects of the system structure improvement and control algorithm optimization is proposed by combining the technologies of power system flexible transmission grid-connected and multiple inverters. Finally, the simulation model for the novel co-phase traction power supply system was designed and built, and the present method was verified by a set of simulation experiments so as to obtain the expected results.


2019 ◽  
Vol 1399 ◽  
pp. 022053
Author(s):  
E A Gunin ◽  
R A Petukhov ◽  
E Yu Sizganova ◽  
A N Filatov ◽  
A Yu Yuzhannikov

Sign in / Sign up

Export Citation Format

Share Document