Sliding-mode control of the DC-DC flyback converter in discontinuous conduction mode

Author(s):  
Mahdi Salimi ◽  
Vadood Hajbani
2021 ◽  
pp. 0309524X2110605
Author(s):  
Mohamed Bendaoud

This paper presents an approach to design the sliding mode control for an AC-DC converter, consisting of a diode rectifier in series with a boost converter. The results obtained show that this converter with the proposed control law can be used to control the extraction of mechanical power when connecting the permanent magnet synchronous generator (PMSG) to a wind turbine. The boost converter operates in discontinuous conduction mode (DCM) in order to reduce the total harmonic distortion (THD) of the currents in the PMSG. To verify the performance of the proposed method, a simulation study is performed.


Author(s):  
Sattianadan D ◽  
Roopam Jha ◽  
Deepak Kumar Nayak

This paper presents a method to track the maximum power point for an isolated grid connected photovoltaic system. The method used to achieve this goal is sliding mode control. A high frequency flyback converter topology working in continuous conduction mode is used to boost the voltage and also provides galvanic isolation between input and output side. An inverter is used to invert the power for a grid connected operation. Therefore, the primary objective of this study is to design a sliding mode controller which can track maximum power driving a high frequency flyback converter and demonstrate its practicality as a higly efficient maximum power point tracker. This system is modelled and tested in MATLAB SIMULINK. To verify the results a practical implementation of sliding mode controller with high frequency flyback transformer is performed in a hardware setup


2011 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Aamir Hashim Obeid Ahmed ◽  
Martino O. Ajangnay ◽  
Shamboul A. Mohamed ◽  
Matthew W. Dunnigan

2009 ◽  
Vol 129 (7) ◽  
pp. 1389-1396 ◽  
Author(s):  
Misawa Kasahara ◽  
Yuki Kanai ◽  
Ryoko Shiraki ◽  
Yasuchika Mori

Sign in / Sign up

Export Citation Format

Share Document