Study of a fuel cell power plant in power distribution system - part I: dynamic model

Author(s):  
Z. Miao ◽  
M.A. Choudhry ◽  
R.L. Klein ◽  
L. Fan
Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3060 ◽  
Author(s):  
Carmen Raga ◽  
Andres Barrado ◽  
Antonio Lazaro ◽  
Alberto Martin-Lozano ◽  
Isabel Quesada ◽  
...  

The design of the optimal power distribution system (PDS or powertrain) for fuel cell-based vehicles is a complex task due to PDS comprising one or more power converters, several types of secondary energy sources, a fuel cell, several control loops, and protections, among others. The optimized powertrain design tries to minimize the mass, volume, and cost, and also to improve system efficiency, fuel economy (both hydrogen and electricity), and vehicle autonomy. This paper analyzes the influence of four different factors that deeply affect the optimal powertrain design, in particular: the minimum power delivered by the fuel cell, the storage of the recovered energy from the regenerative braking periods, the battery technology, and the maximum battery state-of-charge variation. The analysis of these factors is carried out over a set of 9 different fuel cell-based architectures applied to a light vehicle, and a 10th architecture corresponding to a pure electric vehicle. This analysis provides the knowledge of how these design factors affect the mass, volume, and cost of the optimal power distribution architectures, and how they can be considered in the design.


Author(s):  
George Kopasakis ◽  
Thomas Brinson ◽  
Sydni Credle ◽  
Ming Xu

As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.


2014 ◽  
Vol 9 (2) ◽  
pp. 92
Author(s):  
Josephin Sundah

Research regarding scheduling and power distribution system on diesel power plant in North Sulawesi using genetic algorithm has been done. This research was conducted to provide a new approach for scheduling and power distribution in North Sulawesi. Method of genetic algorithm is used in this study to address the problem of scheduling and distribution system of diesel power plant. Method of genetic algorithms is a heuristic search algorithm that mimics the mechanisms of biological system. Under this concept, the problem will be solved using the pattern of biological evolution. Solutions for solving problems will apply the method of selection, crossover, and mutation. Scheduling using genetic algorithm can optimize the scheduling done by by PT. PLN North Sulawesi, Minahasa System AP2B. Based on the results and the discussion it can be concluded that the genetic algorithm can be used as an efficient method for scheduling and power distribution system on the diesel power plants in North Sulawesi.


Author(s):  
George Kopasakis ◽  
Thomas Brinson ◽  
Sydni Credle

As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a microturbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell model is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.


Author(s):  
Li Zhao ◽  
Jacob Brouwer ◽  
Sean James ◽  
John Siegler ◽  
Eric Peterson ◽  
...  

To improve the reliability and the energy efficiency of datacenters, as well as to reduce infrastructure costs and environmental impacts, we demonstrated and evaluated the use of a 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) stack and system for powering the servers in a data center. In this study, we designed, tested and demonstrated a PEMFC system as a Distributed Generation (DG) prime mover that has high reliability and efficiency for both steady state and dynamic operations. The 10kW PEMFC stack and system was designed to power a server rack and eliminate the power distribution system in the datacenter. The steady state electrical properties such as efficiency and polarization curves were evaluated. The ramp rate and dynamic response of the PEMFC system to server and system dynamics was also characterized and can be used to determine energy storage requirements and develop optimal control strategies to enable the dynamic load following capability.


Sign in / Sign up

Export Citation Format

Share Document