Prediction of Product Degradation in Outside Environment Based on Cumulative Damage Degradation Model

Author(s):  
Wen Xi ◽  
Yijun Tong ◽  
Bohua Qiu ◽  
Zijie Liu ◽  
Xiliang Xu
2020 ◽  
pp. 105678952096486
Author(s):  
Changjie Jiang ◽  
Xintian Liu ◽  
Minghui Zhang ◽  
Xu Wang ◽  
Yansong Wang

In order to determine the effect of different loads on fatigue damage, a strength degradation model is proposed according to the law of residual strength degradation of metal materials. The model is verified with the strength degradation test data, and the results show that the model can describe the strength degradation process of general metal materials well. Combined with the strength degradation model, an improved equivalent damage model for different loading sequences is proposed. On this basis, a nonlinear fatigue cumulative damage model based on strength degradation is derived. The cumulative damage model is applied to the estimation of fatigue residual life under two-, three-, and four-stage loads to investigate the effects of different loading sequence on fatigue damage under various loading conditions. Combining with experimental data, it is verified that the cumulative damage model can accurately estimate the fatigue life under two-, three-, and four-stage loads.


2019 ◽  
Vol 32 (3-4) ◽  
pp. 157-169
Author(s):  
Lingxin Zhang ◽  
◽  
Baijie Zhu ◽  
Yunqin Xue ◽  
Jialu Ma ◽  
...  

2018 ◽  
Vol 30 (2) ◽  
pp. 327
Author(s):  
Chunyan Yu ◽  
Huixiang Lin ◽  
Xiaodan Xu ◽  
Xinyan Ye

1963 ◽  
Vol 3 (01) ◽  
pp. 1-8 ◽  
Author(s):  
N.T. Burdine

BURDINE, N.T., SOCONY MOBIL OIL CO., INC., DALLAS, TEX Abstract The present investigation is concerned with the cumulative damage to rock samples when exposed to cyclic stresses under various loading conditions. Information on the response of rocks to repetitive deformational forces is an essential prerequisite to an understanding of the fundamentals of drilling. Using a laboratory designed and constructed dynamic-stress apparatus, preliminary data were obtained on cylindrical rock samples. The experiments consist of measuring the number of cycles to failure for a given axial load ( static plus dynamic). Data were obtained for various confining and pore pressures, pore fluids (air and water), frequencies of stress application and loading procedures. The results are related to failure theories and dynamic fatigue properties of other materials. Introduction In most conventional and new drilling processes, repetitive forces are applied to the bottom of the borehole. Furthermore, in hard-rock drilling the number of applications of the forces to a particular section of rock may become excessively large. The present investigation is concerned with the cumulative damage to rocks when exposed to cyclic stresses under various loading conditions. It is believed that the experiments will lead to a better understanding of the mechanical response of rocks to particular deformational forces and to a more efficient drillingprocedure.Thepresent investigation is the initial part of a general study of the behavior of inelastic materials under static and dynamic conditions, including both theoretical and experimental studies. SURVEY OF FAILURE THEORIES OF MATERIALS Few, even phenomenological, theories on rock deformation have been established because the state of knowledge of flow, fracture and strength of rocks is largely empirical. Most of the theories that do exist were originally formulated for other materials. HOOKE'S LAW The state of stress in continuous media is completely determined by the stress tensor and the state of deformation by the strain tensor . In the linear theory of elasticity the generalized Hooke's law is ..........................(1) where the coefficients are the components of the elasticity tensor. For homogeneous and isotropic conditions the number of independent coefficients reduce to two, and Eq. 1 becomes ..................(2) in which and are Lame's constants; is the kronecker delta; and is the dilation. This simplified version of Hooke's law has been used quite extensively in geophysical research where most of the information about the mechanical properties of the earth have been obtained. However, it has only limited application in rock fatigue studies. MATERIAL BEHAVIOR Many solids obey Hooke's law at small stresses, but for higher stresses a hysteretic effect occurs due to temporary or permanent residual deformation of the solid (inelastic deformation). Such deviations in mechanical behavior exist in varying degrees in different classes of materials. Most elastic materials have a microscopic heterogeneity due either to random distribution of anisotropic particles, or due to some preferred particle orientation, or both. Other materials are quite grossly heterogeneous. And the method of formation, particularly in rocks, oftentimes creates residual stress concentrations which have complicated states of imperfect equilibrium. Also, the thermal effects resulting from structural behavior give rise to nonuniform temperature distributions and the degradation of mechanical energy. When such bodies are exposed to certain large loading conditions, the inelastic behavior is intensified so strongly that the deformation, normally brittle, becomes ductile. SPEJ P. 1^


Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


2021 ◽  
Vol 11 (16) ◽  
pp. 7175
Author(s):  
Islem Bejaoui ◽  
Dario Bruneo ◽  
Maria Gabriella Xibilia

Rotating machines such as induction motors are crucial parts of most industrial systems. The prognostic health management of induction motor rotors plays an essential role in increasing electrical machine reliability and safety, especially in critical industrial sectors. This paper presents a new approach for rotating machine fault prognosis under broken rotor bar failure, which involves the modeling of the failure mechanism, the health indicator construction, and the remaining useful life prediction. This approach combines signal processing techniques, inherent metrics, and principal component analysis to monitor the induction motor. Time- and frequency-domains features allowing for tracking the degradation trend of motor critical components that are extracted from torque, stator current, and speed signals. The most meaningful features are selected using inherent metrics, while two health indicators representing the degradation process of the broken rotor bar are constructed by applying the principal component analysis. The estimation of the remaining useful life is then obtained using the degradation model. The performance of the prediction results is evaluated using several criteria of prediction accuracy. A set of synthetic data collected from a degraded Simulink model of the rotor through simulations is used to validate the proposed approach. Experimental results show that using the developed prognostic methodology is a powerful strategy to improve the prognostic of induction motor degradation.


Sign in / Sign up

Export Citation Format

Share Document