A substation virtual environment based on motion capture

Author(s):  
Peng Liu ◽  
Yuping Huo ◽  
Xiue Zhang ◽  
Bing Li
2001 ◽  
Vol 17 (1) ◽  
pp. 14-29 ◽  
Author(s):  
Andrea Bottino ◽  
Aldo Laurentini

2003 ◽  
Vol 12 (4) ◽  
pp. 411-421 ◽  
Author(s):  
Benoit Bideau ◽  
Richard Kulpa ◽  
Stéphane Ménardais ◽  
Laetitia Fradet ◽  
Franck Multon ◽  
...  

Virtual reality offers new tools for human motion understanding. Several applications have been widely used in teleoperation, military training, driving and flying simulators, and so forth. We propose to test if virtual reality is a valid training tool for the game of handball. We focused on the duel between a handball goalkeeper and a thrower. To this end, we defined a pilot experiment divided into two steps: an experiment with real subjects and another one with virtual throwers. The throwers' motions were captured in order to animate their avatar in a reality center. In this paper, we focused on the evaluation of presence when a goalkeeper is confronting these avatars. To this end, we compared the goalkeeper's gestures in the real and in the virtual experiment to determine if virtual reality engendered the same movements for the same throw. Our results show that gestures did not differ between the real and virtual environment. As a consequence, we can say that the virtual environment offered enough realism to initiate natural gestures. Moreover, as in real games, we observed the goalkeeper's anticipation to allow us to use virtual reality in future work as a way to understand the goalkeeper and thrower interactions. The main originality of this work was to measure presence in a sporting application with new evaluation methods based on motion capture.


Author(s):  
Woong Choi ◽  
◽  
Naoki Hashimoto ◽  
Ross Walker ◽  
Kozaburo Hachimura ◽  
...  

Creating reactive motions with conventional motion capture systems is difficult because of the different task environment required. To overcome this drawback, we developed a reactive motion capture system that combines conventional motion capture system with force feedback and a human-scale virtual environment. Our objective is to make animation with reactive motion data generated from the interaction with force feedback and the virtual environment, using the fact that a person’s motions in the real world can be represented by the reactions of the person to real objects. In this paper we present the results of some animations made under various scenarios using animating reactive motion generation with our reactive motion capture system. Our results demonstrate that the reactive motion generated by this system was useful for producing the animation including scenes of reactive motion.


2015 ◽  
Vol 11 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Hector A. Tinoco ◽  
Alex M. Ovalle ◽  
Carlos A. Vargas ◽  
María J. Cardona

Author(s):  
Francisco Garcia Rivera ◽  
Erik Brolin ◽  
Anna Syberfeldt ◽  
Dan Högberg ◽  
Aitor Iriondo Pascual ◽  
...  

This paper presents a solution that integrates a smart textiles system with virtual reality to assess the design of workstations from an ergonomics point of view. By using the system, ergonomists, designers, engineers, and operators, can test design proposals of workstations in an immersive virtual environment while they see their ergonomics evaluation results displayed in real-time. The system allows its users to evaluate the ergonomics of the workplace in a pre-production phase. The workstation design can be modified, enabling workstation designers to better understand, test and evaluate how to create successful workstation designs, eventually to be used by the operators in production. This approach uses motion capture together with virtual reality and is aimed to complement and integrate with the use of digital human modelling (DHM) software at virtual stages of the production development process.


Sign in / Sign up

Export Citation Format

Share Document