Combining Particle Filtering with Cricket System for Indoor Localization and Tracking Services

Author(s):  
Junaid Ansari ◽  
Janne Riihijarvi ◽  
Petri Mahonen
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1090
Author(s):  
Wenxu Wang ◽  
Damián Marelli ◽  
Minyue Fu

A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.


2021 ◽  
pp. 101-107
Author(s):  
Mohammad Alshehri ◽  

Presently, a precise localization and tracking process becomes significant to enable smartphone-assisted navigation to maximize accuracy in the real-time environment. Fingerprint-based localization is the commonly available model for accomplishing effective outcomes. With this motivation, this study focuses on designing efficient smartphone-assisted indoor localization and tracking models using the glowworm swarm optimization (ILT-GSO) algorithm. The ILT-GSO algorithm involves creating a GSO algorithm based on the light-emissive characteristics of glowworms to determine the location. In addition, the Kalman filter is applied to mitigate the estimation process and update the initial position of the glowworms. A wide range of experiments was carried out, and the results are investigated in terms of distinct evaluation metrics. The simulation outcome demonstrated considerable enhancement in the real-time environment and reduced the computational complexity. The ILT-GSO algorithm has resulted in an increased localization performance with minimal error over the recent techniques.


2021 ◽  
Author(s):  
Hossein Shoushtari ◽  
Cigdem Askar ◽  
Dorian Harder ◽  
Thomas Willemsen ◽  
Harald Sternberg

2019 ◽  
Vol 26 (12) ◽  
pp. 1773-1777 ◽  
Author(s):  
Parvin Malekzadeh ◽  
Arash Mohammadi ◽  
Mihai Barbulescu ◽  
Konstantinos N. Plataniotis

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 183514-183523 ◽  
Author(s):  
Danyang Li ◽  
Yumeng Lu ◽  
Jingao Xu ◽  
Qiang Ma ◽  
Zhuo Liu

2019 ◽  
Vol 19 (21) ◽  
pp. 9869-9882 ◽  
Author(s):  
Heng Zhang ◽  
Soon Yim Tan ◽  
Chee Kiat Seow

Sign in / Sign up

Export Citation Format

Share Document