scholarly journals Efficient time synchronization mechanism for wireless multi hop networks

Author(s):  
Bachar Wehbi ◽  
Anis Laouiti ◽  
Ana Cavalli
2018 ◽  
Vol 8 (3) ◽  
pp. 26
Author(s):  
Paul Milbredt ◽  
Efim Schick ◽  
Michael Hübner

Modern automotive control applications require a holistic time-sensitive development. Nowadays, this is achieved by technologies specifically designed for the automotive domain, like FlexRay, which offer a fault-tolerant time synchronization mechanism built into the protocol. Currently, the automotive industry adopts the Ethernet within the car, not only for embedding consumer electronics, but also as a fast and reliable backbone for control applications. Still, low-cost but highly reliable sensors connected over the traditional Controller Area Network (CAN) deliver data needed for autonomous driving. To fusion the data efficiently among all, a common timebase is required. The alternative would be oversampling, which uses more time and energy, e.g., at least double the perception rates of sensors. Ethernet and CAN do require the latter by default. Hence, a global synchronization mechanism eases tremendously the design of a low power automotive network and is the foundation of a transparent global clock. In this article, we present the first step: Synchronizing legacy FlexRay networks to the upcoming Ethernet backbone, which will contain a precise clock over the generalized Precision Time Protocol (gPTP) defined in IEEE 802.1AS. FlexRay then could still drive its strengths with deterministic transmission behavior and possibly also serve as a redundant technology for fail-operational system design.


2012 ◽  
Vol 220-223 ◽  
pp. 1871-1876
Author(s):  
Feng Mei Liang ◽  
Bin Liu

Due to energy restrictions, node distribution density and hardware computing power etc., the traditional time synchronization mechanism is not suitable for wireless sensor network. The paper discussed the main reason that caused asynchronization and proposed an improved time synchronization algorithm based on cross layer optimization for wireless sensor network. Considering the stability of crystal oscillation and the linearity of crystal deviation in the physical layer, the improved time synchronization mechanism implemented a self-correction by the cross-layer MAC protocol. Estimating the crystal oscillation drift, the crystal deviation had been self-corrected just by a few times data broadcast. The experiment on the MCU Si1000 physical layer platform has demonstrated the practicability of the algorithm. The synchronization algorithm is able to keep a stable network operation in the way of extending the synchronization period and reducing the synchronization cost. The synchronization mechanism is applicable to the active acquisition network, especially the realtime one.


Sign in / Sign up

Export Citation Format

Share Document