Measurements on an argon helicon plasma with variable magnetic nozzle

Author(s):  
C.M. Denning ◽  
J.E. Scharer
2003 ◽  
Vol 772 ◽  
Author(s):  
Masakazu Muroyama ◽  
Kazuto Kimura ◽  
Takao Yagi ◽  
Ichiro Saito

AbstractA carbon nanotube triode using Helicon Plasma-enhanced CVD with electroplated NiCo catalyst has been successfully fabricated. Isolated NiCo based metal catalyst was deposited at the bottom of the cathode wells by electroplating methods to control the density of carbon nanotubes and also reduce the activation energy of its growth. Helicon Plasma-enhanced CVD (HPECVD) has been used to deposit nanotubes at 400°C. Vertically aligned carbon nanotubes were then grown selectively on the electroplated Ni catalyst. Field emission measurements were performed with a triode structure. At a cathode to anode gap of 1.1mm, the turn on voltage for the gate was 170V.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanho Moon ◽  
Kotaro Yamasaki ◽  
Yoshihiko Nagashima ◽  
Shigeru Inagaki ◽  
Takeshi Ido ◽  
...  

AbstractA tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazunori Takahashi

AbstractDevelopment of a magnetic nozzle radiofrequency (rf) plasma thruster has been one of challenging topics in space electric propulsion technologies. The thruster typically consists of an rf plasma source and a magnetic nozzle, where the plasma produced inside the source is transported along the magnetic field and expands in the magnetic nozzle. An imparted thrust is significantly affected by the rf power coupling for the plasma production, the plasma transport, the plasma loss to the wall, and the plasma acceleration process in the magnetic nozzle. The rf power transfer efficiency and the imparted thrust are assessed for two types of rf antennas exciting azimuthal mode number of $$m=+1$$ m = + 1 and $$m=0$$ m = 0 , where propellant argon gas is introduced from the upstream of the thruster source tube. The rf power transfer efficiency and the density measured at the radial center for the $$m=+1$$ m = + 1 mode antenna are higher than those for the $$m=0$$ m = 0 mode antenna, while a larger thrust is obtained for the $$m=0$$ m = 0 mode antenna. Two-dimensional plume characterization suggests that the lowered performance for the $$m=+1$$ m = + 1 mode case is due to the plasma production at the radial center, where contribution on a thrust exerted to the magnetic nozzle is weak due to the absence of the radial magnetic field. Subsequently, the configuration is modified so as to introduce the propellant gas near the thruster exit for the $$m=0$$ m = 0 mode configuration and the thruster efficiency approaching twenty percent is successfully obtained, being highest to date in the kW-class magnetic nozzle rf plasma thrusters.


2015 ◽  
Vol 43 (10) ◽  
pp. 3702-3706 ◽  
Author(s):  
Chao Ma ◽  
Gao Zhao ◽  
Yu Wang ◽  
Zhongwei Liu ◽  
Lijun Sang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document