Heterogeneous Functional Units for High Speed Fault-Tolerant Execution Stage

Author(s):  
Yousuke Nakamura ◽  
Kei Hiraki
Author(s):  
Mark Jansen ◽  
Gerald Montague ◽  
Andrew Provenza ◽  
Alan Palazzolo

Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540°C (1,000°F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.


Author(s):  
Soteris Kalogirou ◽  
Kostas Metaxiotis ◽  
Adel Mellit

Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and nowadays are very popular. They are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems and once trained can perform prediction and generalization at very high speed. AI-based systems are being developed and deployed worldwide in a wide variety of applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. This chapter presents a review of the main AI techniques such as expert systems, artificial neural networks, genetic algorithms, fuzzy logic and hybrid systems, which combine two or more techniques. It also outlines some applications in the energy sector.


Author(s):  
Zhengfeng Huang ◽  
Zian Su ◽  
Tianming Ni ◽  
Qi Xu ◽  
Haochen Qi ◽  
...  

As the demand for low-power and high-speed logic circuits increases, the design of differential flip-flops based on sense-amplifier (SAFF), which have excellent power and speed characteristics, has become more and more popular. Conventional SAFF (Con SAFF) and improved SAFF designs focus more on the improvement of speed and power consumption, but ignore their Single-Event-Upset (SEU) sensitivity. In fact, SAFF is more susceptible to particle impacts due to the small voltage swing required for differential input in the master stage. Based on the SEU vulnerability of SAFF, this paper proposes a novel scheme, namely cross-layer Dual Modular Redundancy (DMR), to improve the robustness of SAFF. That is, unit-level DMR technology is performed in the master stage, while transistor-level stacking technology is used in the slave stage. This scheme can be applied to some current typical SAFF designs, such as Con SAFF, Strollo SAFF, Ahmadi SAFF, Jeong SAFF, etc. Detailed HSPICE simulation results demonstrate that hardened SAFF designs can not only fully tolerate the Single Node Upset of sensitive nodes, but also partially tolerate the Double Node Upset caused by charge sharing. Besides, compared with the conventional DMR hardened scheme, the proposed cross-layer DMR hardened scheme not only has the same fault-tolerant characteristics, but also greatly reduces the delay, area and power consumption.


Sign in / Sign up

Export Citation Format

Share Document