Techno-Economic Analysis of Photovoltaic-Hydrogen Fuel Cell/Pumped Hydro Storage System for Micro Grid Applications: Case Study in Cyprus

Author(s):  
Loiy Al-Ghussain ◽  
Onur Taylan ◽  
Remember Samu ◽  
Murat Fahrioglu
Author(s):  
Andris R. Abele

On-board storage and handling of hydrogen continues to be a major challenge on the road to the widespread commercialization of hydrogen fuel cell vehicles. QUANTUM Fuel Systems Technologies WorldWide, Inc. (QUANTUM) is developing a number of advanced technologies in response to the demand by its customers for compact, lightweight, safe, robust, and cost-effective hydrogen fuel systems. QUANTUM approaches hydrogen storage and handling as an engineered system integrated into the design of the vehicle. These engineered systems comprise advanced storage, regulation, metering, and electronic controls developed by QUANTUM. In 2001, QUANTUM validated, commercialized, and began production of lightweight compressed hydrogen storage systems. The first commercial products include storage technologies that achieved 7.5 to 8.5 percent hydrogen storage by weight at 350 bar (5,000 psi). QUANTUM has also received German TUV regulatory approval for its 700 bar (10,000-psi) TriShield10™ hydrogen storage cylinder, based on hydrogen standards developed by the European Integrated Hydrogen Project (EIHP). QUANTUM has patented an In-Tank Regulator for use with hydrogen and CNG, which have applications in both fuel cell and alternative fuel vehicle markets. To supplement the inherent safety features designed into the new 700 bar storage tank, QUANTUM’s patented 700 bar In-Tank Regulator provides additional safety by confining the high pressure in the tank and allowing only a maximum delivery pressure of 10 bar (150-psi) outside the storage system. This paper describes initial applications for these hydrogen fuel systems, which have included fuel cell automobiles, buses, and hydrogen refueling stations.


Author(s):  
Orwell Madovi ◽  
Andreas Hoffrichter ◽  
Nick Little ◽  
Shanelle N. Foster ◽  
Raphael Isaac

AbstractDiesel fuel combustion results in exhaust containing air pollutants and greenhouse gas emissions. Many railway vehicles use diesel fuel as their energy source. Exhaust emissions, as well as concerns about economical, alternative power supply, have driven efforts to move to hydrogen motive power. Hydrogen fuel cell technology applied to railways offers the opportunity to eliminate harmful exhaust emissions and the potential for a low- or zero-emission energy supply chain. Currently, only multiple-unit trains with hydrail technology operate commercially. Development of an Integrated Hybrid Train Simulator for intercity railway is presented. The proposed tool incorporates the effect of powertrain components during the wheel-to-tank process. Compared to its predecessors, the proposed reconfigurable tool provides high fidelity with medium requirements and minimum computation time. Single train simulation and the federal government’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model are used in combination to evaluate the feasibility of various train and powertrain configurations. The Piedmont intercity service operating in North Carolina is used as a case study. The study includes six train configurations and powertrain options as well as nine hydrogen supply options in addition to the diesel supply. The results show that a hydrail option is not only feasible, but a low- or zero-carbon hydrogen supply chain could be possible.


Sign in / Sign up

Export Citation Format

Share Document