Fuzzy logic control of predictive current control for grid-connected single phase inverter

Author(s):  
S. Premrudeepreechacharn ◽  
T. Poapornsawan
2019 ◽  
Vol 8 (4) ◽  
pp. 2814-2822

This paper projects a high performance decoupled current control using a dq synchronous reference frame for single-phase inverter. For the three-phase inverter the conversion from AC to DC with Proportional Integral controller grants to obtain steady state error for AC Voltages and currents but has a few challenges with the single-phase systems. Hence, an orthogonal pair (β) is created by shifting the phase by one quarter cycle with respect to the real component (α) which is needed for the transformation from stationary to rotating frame. The synchronous reference frame control theory helps in controlling the AC voltage by using DC signal as the reference with the proportional integrator controllers. The implementation of the control is done with two-stage converter with LCL filter for a single-phase photovoltaic system. A modified MPPT Incremental conductance algorithm along with decoupled current control helps in regulating the active and reactive power infused into the grid where the power factor is improved, the efficiency of the system is increased above 95% and total harmonic distortion for current is also reduced to3%. The results have been validated using MATLAB.


Author(s):  
K.C. Chen ◽  
S. Salimin ◽  
S. A. Zulkifli ◽  
R. Aziz

<span>This paper presents the harmonic reduction performance of proportional resonant (PR) current controller in single phase inverter system connected to nonlinear load. In the study, proportional resonant current controller and low pass filter is discussed to eliminate low order harmonics injection in single phase inverter system. The potential of nonlinear load in producing harmonics is showed and identified by developing a nonlinear load model using a full bridge rectifier circuit. The modelling and simulation is done in MATLAB Simulink while harmonic spectrum results are obtained using Fast Fourier Transfor. End result show PR current controller capability to overcome the injection of current harmonic problems thus improved the overall total harmonic distortion (THD).</span>


2019 ◽  
Vol 107 ◽  
pp. 02003 ◽  
Author(s):  
Ezzaldden Raweh ◽  
Wei Pi ◽  
Omar Busati ◽  
Abdul Rehman ◽  
Saif Mubbarak ◽  
...  

To control the solar power, reliability and stability are two main challenges. In addition, the total harmonic distortion (THD) must be within limits for optimal operation. In an inverter, the harmonics are produced during the conversion of DC power to AC power, which will affect the power electronic devices. Therefore, to overcome such challenges in high voltage and high power systems multilevel inverter (MLI) topology is more useful. Such type of inverters uses various DC voltage levels to generate the stepped AC at its output, approaching the sinusoidal shape. The cascaded H-bridge, capacitor-clamped, and diode-clamped are the most commonly used multilevel inverters topologies. For photovoltaic (PV) usage, cascaded H-bridge (CHB) MLI is more adaptive among the three topologies, where for each H-bridge unit; each PV model behaves as an isolated DC source. This paper specifically focused on the simulation of PV power as a source to the system and displayed the potential of a single-phase 11-level CHB inverter. For switching the IGBT devices, sinusoidal pulse width modulation (SPWM) is applied. Moreover, the fuzzy logic control (FLC) is introduced to improve the power quality. FLC reduce the THD via finding the appropriate set of IGBT switch signals. To show the improvement in the operation and reduction in the complex harmony signal effects of the CHB 11-level inverter, the proposed system is designed in Matlab/Simulink software. Finally, the results show that the dynamic behavior of the FLC is much better than the traditional proportional integral derivative (PID) controller.


Sign in / Sign up

Export Citation Format

Share Document