Single to multi-scale texturing for high efficiency micromorph thin film silicon solar cell

Author(s):  
Mathieu Boccard ◽  
Peter Cuony ◽  
Corsin Battaglia ◽  
Simon Hanni ◽  
Sylvain Nicolay ◽  
...  
2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tsung-Wei Chang ◽  
Chao-Te Liu ◽  
Wen-Hsi Lee ◽  
Yu-Jen Hsiao

In this study, commercially available white paint is used as a pigmented dielectric reflector (PDR) in the fabrication of a low-cost back electrode stack with an Al-doped ZnO (AZO) layer for thin-film silicon solar cell applications. An initial AZO film was deposited by the radio-frequency magnetron sputtering method. In order to obtain the highest transmittance and lowest resistivity of AZO film, process parameters such as sputtering power and substrate temperature were investigated. The optimal 100-nm-thick AZO film with low resistivity and high transmittance in the visible region are 6.4 × 10−3 Ω·cm and above 80%, respectively. Using glue-like white paint doped withTiO2 nanoparticles as the PDR enhances the external quantum efficiency (EQE) of a microcrystalline silicon absorptive layer owing to the doped white particles improving Fabry–Pérot interference (FPI), which raises reflectance and scattering ability. To realize the cost down requirement, decreasing the noble metal film thickness such as a 30-nm-thick silver reflector film, and a small doping particle diameter (D50 = 135 nm) and a high solid content (20%) lead to FPI improvement and a great EQE, which is attributed to improved scattering and reflectivity because of optimum diameter (Dopt) and thicker PDR film. The results indicate that white paint can be used as a reflector coating in low-cost back-electrode structures in high-performance electronics.


1997 ◽  
Vol 485 ◽  
Author(s):  
Bhushan L. Sopori ◽  
Wei Chen ◽  
Jamal Madjdpour ◽  
Marta Symko

AbstractWe present a new device structure for a high efficiency, thin-film, silicon solar cell. A preliminary design and an approach for fabrication of such a cell are discussed. The cell structure uses interface texturing and a back surface reflector for effective light trapping. A theoretical analysis is applied to determine the major parameters of the cell. These analyses indicate that a cell efficiency of about 18% is attainable with a Si film thickness of 10–15 μm, and grain size of about 50 μm. A method for making a large-grain thin cell is proposed.


Solar Energy ◽  
2004 ◽  
Vol 77 (6) ◽  
pp. 939-949 ◽  
Author(s):  
Kenji Yamamoto ◽  
Akihiko Nakajima ◽  
Masashi Yoshimi ◽  
Toru Sawada ◽  
Susumu Fukuda ◽  
...  

2015 ◽  
Vol 55 (9-10) ◽  
pp. 1800-1803 ◽  
Author(s):  
D. Mello ◽  
R. Ricciari ◽  
A. Battaglia ◽  
M. Foti ◽  
C. Gerardi

Sign in / Sign up

Export Citation Format

Share Document