The SunDial Framework: Enabling High Penetration Solar through the Integration of Energy Storage, Demand Management, and Forecasting

Author(s):  
Matt Kromer ◽  
Michael Zeifman ◽  
Kurt Roth ◽  
Tsz Yip
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Tong ◽  
David J. Farnham ◽  
Lei Duan ◽  
Qiang Zhang ◽  
Nathan S. Lewis ◽  
...  

AbstractIf future net-zero emissions energy systems rely heavily on solar and wind resources, spatial and temporal mismatches between resource availability and electricity demand may challenge system reliability. Using 39 years of hourly reanalysis data (1980–2018), we analyze the ability of solar and wind resources to meet electricity demand in 42 countries, varying the hypothetical scale and mix of renewable generation as well as energy storage capacity. Assuming perfect transmission and annual generation equal to annual demand, but no energy storage, we find the most reliable renewable electricity systems are wind-heavy and satisfy countries’ electricity demand in 72–91% of hours (83–94% by adding 12 h of storage). Yet even in systems which meet >90% of demand, hundreds of hours of unmet demand may occur annually. Our analysis helps quantify the power, energy, and utilization rates of additional energy storage, demand management, or curtailment, as well as the benefits of regional aggregation.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1965
Author(s):  
Edoardo De Din ◽  
Fabian Bigalke ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

The development of strategies for distribution network management is an essential element for increasing network performance and reducing the upgrade of physical assets. This paper analyzes a multi-timescale framework to control the voltage of distribution grids characterized by a high penetration of renewables. The multi-timescale solution is based on three levels that coordinate Distributed Generation (DG) and Energy Storage Systems (ESSs), but differs in terms of the timescales and objectives of the control levels. Realistic load and photovoltaic generation profiles were created for cloudy and clean sky conditions to evaluate the performance features of the multi-timescale framework. The proposed solution was also compared with different frameworks featuring two of the three levels, to highlight the contribution of the combination of the three levels in achieving the best performance.


Author(s):  
Zaid H. Ali ◽  
Ziyaad H. Saleh ◽  
Raid W. Daoud ◽  
Ahmed H. Ahmed

<p><span>This paper proposes a methodology for designing and operating a microgrid (MG) for the main campus of the Technical Institution Hawija. In this MG, a battery energy storage system (BESS), photovoltaic (PV) generation system, and controllable loads are included. Due to the high penetration of the PVs, over-voltage issues may occur in this MG. A novel operation strategy is considered by coordinating the BESS, PVs, and loads to prevent power outages and accomplish a secure operation of this MG. In this proposed approach, droop controllers have been implemented to provide the appropriate references for the PVs and BESS to maintain the voltage of the MG within a secure range. The generation of the PVs may be curtailed to guarantee the fidelity of the voltage. The intended simulations will be based on MATLAB/Simulink to show the efficacy of the intended design.</span></p><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML&amp;delayStartupUntil=configured"></script><script id="texAllTheThingsPageScript" type="text/javascript" src="chrome-extension://cbimabofgmfdkicghcadidpemeenbffn/js/pageScript.js"></script>


2021 ◽  
Vol 9 (4) ◽  
pp. 760-775
Author(s):  
Chengming Zhang ◽  
Lu Liu ◽  
Haozhong Cheng ◽  
Dundun Liu ◽  
Jianping Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document