Quantifying the Relationship Between Higher Photovoltaic Module Efficiency and the Adoption of Distributed Solar

Author(s):  
Ashwin Ramdas ◽  
Kelsey A. W. Horowitz ◽  
Ben Sigrin
2021 ◽  
Vol 11 (2) ◽  
pp. 527-534
Author(s):  
Anton Driesse ◽  
Marios Theristis ◽  
Joshua S. Stein

Author(s):  
Kotchapong Sumanonta ◽  
Pasist Suwanapingkarl ◽  
Pisit Liutanakul

This article presents a novel model for the equivalent circuit of a photovoltaic module. This circuit consists of the following important parameters: a single diode, series resistance (Rs) and parallel resistance (Rp) that can be directly adjusted according to ambient temperature and the irradiance. The single diode in the circuit is directly related to the ideality factor (m), which represents the relationship between the materials and significant structures of PV module such as mono crystalline, multi crystalline and thin film technology.  Especially, the proposed model in this article is to present the simplified model that can calculate the results of I-V curves faster and more accurate than other methods of the previous models. This can show that the proposed models are more suitable for the practical application. In addition, the results of the proposed model are validated by the datasheet, the practical data in the laboratory (indoor test) and the onsite data (outdoor test). This ensures that the less than 0.1% absolute errors of the model can be accepted.


2017 ◽  
Vol 21 (2) ◽  
pp. 915-923 ◽  
Author(s):  
Hafiz Ali ◽  
Muhammad Zafar ◽  
Muhammad Bashir ◽  
Muhammad Nasir ◽  
Muzaffar Ali ◽  
...  

The air borne dust deposited on the surface of photovoltaic module influence the transmittance of solar radiations from the photovoltaic modules glazing surface. This experimental work aimed to investigate the effect of dust deposited on the surface of two different types of photovoltaic modules (monocrystalline silicon and polycrystalline silicon). Two modules of each type were used and one module from each pair was left exposed to natural atmosphere for three months of winter in Taxila, Pakistan. Systematic series of measurements were conducted for the time period of three months corresponding to the different dust densities. The difference between the output parameters of clean and dirty modules provided the information of percentage loss at different dust densities. The dust density deposited on the modules surface was 0.9867 mg/cm2 at the end of the study. The results showed that dust deposition has strong impact on the performance of photovoltaic modules. The monocrystalline and polycrystalline modules showed about 20% and 16% decrease of average output power, respectively, compared to the clean modules of same type. It was found that the reduction of module efficiency (?clean ? ?dirtv) in case of monocrystalline and polycrystalline module was 3.55% and 3.01%, respectively. Moreover the loss of output power and module efficiency in monocrystalline module was more compared to the polycrystalline module.


2020 ◽  
Author(s):  
Kelsey Horowitz ◽  
Gregory Nielson ◽  
Ashwin Ramdas ◽  
Daniel Cunningham ◽  
Zigurts Majumdar ◽  
...  

2021 ◽  
Author(s):  
Rohan Singh ◽  
Shubham K. Patel ◽  
Nitish Kumar ◽  
Rituraj Singh ◽  
Brijesh Singh ◽  
...  

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Dhiraj Magare ◽  
Oruganti Sastry ◽  
Rajesh Gupta ◽  
Birinchi Bora ◽  
Yogesh Singh ◽  
...  

The performance of photovoltaic (PV) modules in outdoor field conditions is adversely affected by the rise in module operating temperature. Wind flow around the module affects its temperature significantly, which ultimately influences the module output power. In this paper, a new approach has been presented, for module temperature estimation of different technology PV modules (amorphous Si, hetero-junction with intrinsic thin-layer (HIT) and multicrystalline Si) installed at the site of National Institute of Solar Energy (NISE), India. The model based on presented approach incorporates the effect of wind speed along with wind direction, while considering in-plane irradiance, ambient temperature, and the module efficiency parameters. For all the technology modules, results have been analyzed qualitatively and quantitatively under different wind situations. Qualitative analysis based on the trend of module temperature variation under different wind speed and wind direction along with irradiance and ambient temperature has been presented in detail from experimental data. Quantitative results obtained from presented model showed good agreement with the experimentally measured data for different technology modules. The model based on presented approach showed marked improvement in results with high consistency, in comparison with other models analyzed for different technology modules installed at the site. The improvement was very significant in case of multicrystalline Si technology modules, which is most commonly used and highly temperature sensitive technology. Presented work can be used for estimating the effect of wind on different technology PV modules and for prediction of module temperature, which affects the performance and reliability of PV modules.


2012 ◽  
Vol 608-609 ◽  
pp. 195-198
Author(s):  
An Na Wang ◽  
Biao Wu ◽  
Chen Xing Zhang ◽  
Yan Li Song

The model based on matlab S-function of the photovoltaic module describes the relationship between temperature and light intensity of the output characteristics of PV module from the UI and PU curves; This paper further analyzes and discusses the mechanism of hot spot phenomenon of the PV modules and gives reasonable solutions for different situations.


Sign in / Sign up

Export Citation Format

Share Document