Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers

Author(s):  
N. Richard ◽  
S. Girard ◽  
L. Giacomazzi ◽  
L. Martin-Samos ◽  
D. Di Francesca ◽  
...  
2014 ◽  
Vol 61 (4) ◽  
pp. 1819-1825 ◽  
Author(s):  
N. Richard ◽  
S. Girard ◽  
L. Giacomazzi ◽  
L. Martin-Samos ◽  
D. Di Francesca ◽  
...  

2019 ◽  
Vol 47 (1) ◽  
pp. 21-23
Author(s):  
A.A. Balakin ◽  
S.A. Skobelev ◽  
A.V. Andrianov ◽  
E.A. Anashkina ◽  
A.G. Litvak

The successful development of fiber-optic technologies in recent decades has stimulated research on the replacement of components of solid-state laser systems with fiber components, which can drastically change the attractiveness of the corresponding applied developments. Yielding on the energy characteristics of solid-state systems, fiber lasers and nonlinear optical devices have high efficiency of conversion of pump energy to radiation energy associated with waveguide geometry, high quality of the spatial profile of the laser beam, as well as low cost, compactness, lack of alignment in work process. Note that the maximum achievable radiation power in a single fiber is limited primarily by the process of self-focusing, which leads to fiber damage. The use of a multi-core fiber (MCF), consisting of identical equidistant weakly coupled optical fibers, makes it possible to realize initially coherent propagation of laser radiation with a total power noticeably higher than it can be transmitted in a single optical fiber. However, as theoretical and experimental studies have shown, such systems have its own critical power (Balakin et al., 2016) whereby the self-focusing of the quasihomogeneous distribution of the wave field and its separation into a set of incoherent structures occurs. Therefore, we have considered a small-sized optical system of 2N identical weakly coupled optical fibers arranged in a ring (Balakin et. al., 2018). In such systems, it is possible to find stable distributions of intense wave beams, which allow coherent radiation transport over long distances. The total radiation power in the found distributions can significantly (up to 2N times) exceed the critical self-focusing power in continuous media. This manifests itself most clearly for the distribution of un ~ (-1)n with antiphase fields in neighboring waveguides, which is stable at an arbitrary wave beam power. Direct numerical simulation of a nonlinear wave equation confirms the stability of the field distributions found. The research was supported by the RAS Presidium Program «Nonlinear dynamics: fundamental problems and applications».


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2414 ◽  
Author(s):  
Zbigniew Suchorab ◽  
Małgorzata Franus ◽  
Danuta Barnat-Hunek

This article presents research results relating to the potential for waste utilization in the form of polymer optical fiber (POF) scraps. This material is difficult to recycle due to its diverse construction. Three different volumes of POF were used in concrete in these tests: 1%, 2%, and 3%. The experimental studies investigated the basic properties of the concrete, the elastic and dynamic moduli, as well as deformation and deflection of reinforced beams. The microstructures, including the interfacial transition zones (ITZs), were recorded and analyzed using a scanning electron microscope. It was observed that 180 freezing–thawing cycles reduced the concrete frost resistance containing 3% POFs by half compared to the control concrete. The resistance to salt crystallization of this concrete decreased by about 55%. POFs have significant effects on the splitting tensile and flexural strengths compared to the compressive strength. The control beams were destroyed during the four-point static bending tests at half the force applied to the beams that were reinforced with POFs.


2012 ◽  
Author(s):  
Sylvain Girard ◽  
Marilena Vivona ◽  
Luciano Mescia ◽  
Arnaud Laurent ◽  
Youcef Ouerdane ◽  
...  

2013 ◽  
Vol 20 (4) ◽  
pp. 689-696 ◽  
Author(s):  
Jacek Klimek

Abstract This paper outlines a measurement method of properties of microstructured optical fibers that are useful in sensing applications. Experimental studies of produced photonic-crystal fibers allow for a better understanding of the principles of energy coupling in photonic-crystal fibers. For that purpose, fibers with different filling factors and lattice constants were produced. The measurements demonstrated the influence of the fiber geometry on the coupling level of light between the cores. For a distance between the cores of 15 μm, a very low level (below 2%) of energy coupling was obtained. For a distance of 13 μm, the level of energy transfer to neighboring cores on the order of 2-4% was achieved for a filling factor of 0.29. The elimination of the energycoupling phenomenon between the cores was achieved by duplicating the filling factor of the fiber. The coupling level was as high as 22% in the case of fibers with a distance between the cores of 8.5 μm. Our results can be used for microstructured-fiber sensing applications and for transmission-channel switching in liquid-crystal multi-core photonic fibers.


2013 ◽  
Vol 61 (1) ◽  
pp. 279-286 ◽  
Author(s):  
M. Ratuszek ◽  
M.J. Ratuszek ◽  
J. Hejna

Abstract. This paper presents the research on optimization of the splicing process in the electric arc of telecommunication optical fibers and erbium doped EDF fibers. The results of the calculations of diffusion coefficients GeO2 in telecommunication optical fibers and diffusion coefficients Er and Al2O3 (together) in the fiber EDF are presented. Diffusion coefficients were determined for the fusion temperature in the electric arc ≈2000°C, on the basis of changes, along the splice, of spliced thermoluminescence intensity profiles of the fibers. On the basis of knowledge of diffusion coefficients simulation calculation of loss joints of MC SMF fiber (Matched Cladding Single Mode Fiber - SiO2: GeO2) and NZDS SMF (Non Zero Dispersion Shifted - Single Mode Fiber - SiO2: GeO2) with EDF (Erbium Doped Fiber - SiO2: Al2O3, Er) was performed and presented as a function of diffusion time. Experimental studies of optimization of thermal connected MC SMF and NZDS SMF with EDF were presented and compared with theoretical results. This paper presents the results of microscopic observations of defects and diffusion, and X-ray microanalysis in the spliced areas of single-mode telecommunication optical fibers: MC SMF, NZDS-SMF and erbium doped active single mode optical fibers. Studies were performed with the use of the scanning electron microscope JSM5800LV and JSM6610A microscope equipped with EDS X-ray spectrometer. Results showing the influence of heating time on the diffusion of core dopants and the formation of deformations in the splice areas were presented.


Sign in / Sign up

Export Citation Format

Share Document