ANN and PSO based Approach for Solar Energy Forecasting: A Step Towards Sustainable Power Generation

Author(s):  
Md Tabish Ansari ◽  
M. Rizwan
2021 ◽  
pp. 1-12
Author(s):  
Ibrahim Alsaidan ◽  
Mohammad Rizwan ◽  
Muhannad Alaraj

The rapid advancements in the technology, increase in comfort levels, movement of population to urban areas, depletion of fossil fuels and increasing greenhouse gas emissions have invigorated the use of renewable energy resources for power generation in the last few years. The major renewable energy resources which have potential to fulfill the requirements includes solar energy, wind energy, small hydro and biomass etc. Among these major resources, solar energy-based technology is considered as one of the fastest growing technology because of its various advantages and ubiquitous availability of the resources. However, there are certain challenges in the utilization of solar energy for power generation because of various uncertainties in the atmosphere. As a result, the power generated from solar based power plants is fluctuating in nature which is not desirable. Therefore, the utilities are adopting the smart grid approach which has ability to integrate the solar power plants efficiently and the solar energy forecasting is one of the essential tools for this new model. In this paper, AI based techniques are utilized to forecast solar energy using high quality measured solar irradiance data. The forecasting accuracy of the developed models is evaluated based on statistical indices such as absolute relative error and mean absolute percentage error. The results obtained from the developed models are compared to observe the forecasting ability and performance with the high-quality measured data and found accurate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seungjun Choo ◽  
Faizan Ejaz ◽  
Hyejin Ju ◽  
Fredrick Kim ◽  
Jungsoo Lee ◽  
...  

AbstractThermoelectric power generation offers a promising way to recover waste heat. The geometrical design of thermoelectric legs in modules is important to ensure sustainable power generation but cannot be easily achieved by traditional fabrication processes. Herein, we propose the design of cellular thermoelectric architectures for efficient and durable power generation, realized by the extrusion-based 3D printing process of Cu2Se thermoelectric materials. We design the optimum aspect ratio of a cuboid thermoelectric leg to maximize the power output and extend this design to the mechanically stiff cellular architectures of hollow hexagonal column- and honeycomb-based thermoelectric legs. Moreover, we develop organic binder-free Cu2Se-based 3D-printing inks with desirable viscoelasticity, tailored with an additive of inorganic Se82− polyanion, fabricating the designed topologies. The computational simulation and experimental measurement demonstrate the superior power output and mechanical stiffness of the proposed cellular thermoelectric architectures to other designs, unveiling the importance of topological designs of thermoelectric legs toward higher power and longer durability.


2021 ◽  
Vol 11 (15) ◽  
pp. 6887
Author(s):  
Chung-Hong Lee ◽  
Hsin-Chang Yang ◽  
Guan-Bo Ye

In recent years, many countries have provided promotion policies related to renewable energy in order to take advantage of the environmental factors of sufficient sunlight. However, the application of solar energy in the power grid also has disadvantages. The most obvious is the variability of power output, which will put pressure on the system. As more grid reserves are needed to compensate for fluctuations in power output, the variable nature of solar power may hinder further deployment. Besides, one of the main issues surrounding solar energy is the variability and unpredictability of sunlight. If it is cloudy or covered by clouds during the day, the photovoltaic cell cannot produce satisfactory electricity. How to collect relevant factors (variables) and data to make predictions so that the solar system can increase the power generation of solar power plants is an important topic that every solar supplier is constantly thinking about. The view is taken, therefore, in this work, we utilized the historical monitoring data collected by the ground-connected solar power plants to predict the power generation, using daily characteristics (24 h) to replace the usual seasonal characteristics (365 days) as the experimental basis. Further, we implemented daily numerical prediction of the whole-point power generation. The preliminary experimental evaluations demonstrate that our developed method is sensible, allowing for exploring the performance of solar power prediction.


Author(s):  
Alireza Refiei ◽  
Reyhaneh Loni ◽  
Gholamhassan Najafi ◽  
Evangelos Bellos ◽  
Mohsen Sharifpur ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 900-905
Author(s):  
Shengyang Zhou ◽  
Zhen Qiu ◽  
Maria Strømme ◽  
Chao Xu

The new technology of “solar-driven ionic power generation” based on ionic thermophoresis and electrokinetic effects could convert solar energy into electricity by using a film of nanocellulose @ conductive metal–organic framework.


Sign in / Sign up

Export Citation Format

Share Document