Enhancing the Efficiency and Technology of Community Kitchen for 5500 Persons Through Scheffler Solar Concentrator

Author(s):  
Jasdeep Kaur ◽  
Hardeep Singh
Keyword(s):  
Nanoscale ◽  
2020 ◽  
Vol 12 (33) ◽  
pp. 17265-17271
Author(s):  
Seong Kyung Nam ◽  
Kiwon Kim ◽  
Ji-Hwan Kang ◽  
Jun Hyuk Moon

Luminescent solar concentrator-photovoltaic systems (LSC-PV) harvest solar light by using transparent photoluminescent plates, which is expected to be particularly useful for building-integrated PV applications.


2007 ◽  
Vol 43 (4) ◽  
pp. 229-231
Author(s):  
A. V. Vardanyan ◽  
L. A. Gagiyan
Keyword(s):  

2020 ◽  
Vol 4 (41) ◽  
pp. 51-56
Author(s):  
DMITRIY STREBKOV ◽  
◽  
NATAL’YA FILIPPCHENKOVA ◽  

In the field of energy supply to agro-industrial facilities, there is an increasing interest in the development of structures and engineering systems using renewable energy sources, including solar concentrator thermal and photovoltaic modules that combine photovoltaic modules and solar collectors in one structure. The use of the technology of concentrator heat and photovoltaic modules makes it possible to increase the electrical performance of solar cells by cooling them during operation, and significantly reduces the need for centralized electricity and heat supply to enterprises of the agroindustrial complex. (Research purpose) The research purpose is in numerical modeling of thermal processes occurring in a solar concentrator heat-photovoltaic module. (Materials and methods) Authors used analytical methods for mathematical modeling of a solar concentrator heat and photovoltaic module. Authors implemented a mathematical model of a solar concentrator heat and photovoltaic module in the ANSYS Fluent computer program. The distribution contours of temperature and pressure of the coolant in the module channel were obtained for different values of the coolant flow rate at the inlet. The verification of the developed model of the module on the basis of data obtained in an analytical way has been performed. (Results and discussion) The results of comparing the calculated data with the results of computer modeling show a high convergence of the information obtained with the use of a computer model, the relative error is within acceptable limits. (Conclusions) The developed design of the solar concentrator heat and photovoltaic module provides effective cooling of photovoltaic cells (the temperature of photovoltaic cells is in the operating range) with a module service life of at least twenty-five years. The use of a louvered heliostat in the developed design of a solar concentrator heat and photovoltaic module can double the performance of the concentrator.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2146
Author(s):  
Karunesh Kant ◽  
Karthik Nithyanandam ◽  
Ranga Pitchumani

This paper analyzes a novel, cost-effective planar waveguide solar concentrator design that is inspired by cellular hexagonal structures in nature with the benefits of facile installation and low operation and maintenance cost. A coupled thermal and optical analysis of solar irradiation through an ideal hexagonal waveguide concentrator integrated with a linear receiver is presented, along with a cost analysis methodology, to establish the upper limit of performance. The techno-economic model, coupled with numerical optimization, is used to determine designs that maximized power density and minimized the cost of heat in the temperature range of 100–250 °C, which constitutes more than half of the industrial process heat demand. Depending on the incident solar irradiation and the application temperature, the cost of heat for the optimal design configuration ranged between 0.1–0.27 $/W and 0.075–0.18 $/W for waveguide made of ZK7 glass and polycarbonate, respectively. A techno-economic analysis showed the potential of the technology to achieve cost as low as 80 $/m2 and 61 $/m2 for waveguide made of ZK7 glass and polycarbonate material, respectively, which is less than half the cost of state-of-the-art parabolic trough concentrators. Overall, the hexagonal waveguide solar concentrator technology shows immense potential for decarbonizing the industrial process heat and thermal desalination sectors.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1579
Author(s):  
Heng Zhang ◽  
Na Wang ◽  
Kai Liang ◽  
Yang Liu ◽  
Haiping Chen

A solar-aided power generation (SAPG) system effectively promotes the high efficiency and low cost utilization of solar energy. In this paper, the SAPG system is represented by conventional coal-fired units and an annular Fresnel solar concentrator (AFSC) system. The annular Fresnel solar concentrator system is adopted to generate solar steam to replace the extraction steam of the turbine. According to the steam–water matrix equation and improved Flugel formula, the variable conditions simulation and analysis of the thermo-economic index were proposed by Matlab. Furthermore, in order to obtain the range of small disturbance, the method of partial replacement is used, that is, the extraction steam of the turbine is replaced from 0 to 100% with a step size of 20%. In this work, a SAPG system is proposed and its thermo-economic index and small disturbance scope are analyzed. The results show that the SAPG system is energy-saving, and the application scope of small disturbance is related to the quantity of the extraction steam and evaluation index.


Solar Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 338-350
Author(s):  
Annalisa Congiu ◽  
Liliana Gila ◽  
Luciano Caccianotti ◽  
Roberto Fusco ◽  
Chiara Busto ◽  
...  

2021 ◽  
Vol 223 ◽  
pp. 110945
Author(s):  
Megan Phelan ◽  
David R. Needell ◽  
Haley Bauser ◽  
Hanxiao Su ◽  
Michael Deceglie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document