An Exploration of Accessible Remote Tele-operation for Assistive Mobile Manipulators in the Home

Author(s):  
Maria E. Cabrera ◽  
Tapomayukh Bhattacharjee ◽  
Kavi Dey ◽  
Maya Cakmak
Keyword(s):  
Robotica ◽  
2009 ◽  
Vol 27 (1) ◽  
pp. 147-159 ◽  
Author(s):  
M. H. Korayem ◽  
A. Nikoobin ◽  
V. Azimirad

SUMMARYIn this paper, finding the maximum load carrying capacity of mobile manipulators for a given two-end-point task is formulated as an optimal control problem. The solution methods of this problem are broadly classified as indirect and direct. This work is based on the indirect solution which solves the optimization problem explicitly. In fixed-base manipulators, the maximum allowable load is limited mainly by their joint actuator capacity constraints. But when the manipulators are mounted on the mobile bases, the redundancy resolution and nonholonomic constraints are added to the problem. The concept of holonomic and nonholonomic constraints is described, and the extended Jacobian matrix and additional kinematic constraints are used to solve the extra DOFs of the system. Using the Pontryagin's minimum principle, optimality conditions for carrying the maximum payload in point-to-point motion are obtained which leads to the bang-bang control. There are some difficulties in satisfying the obtained optimality conditions, so an approach is presented to improve the formulation which leads to the two-point boundary value problem (TPBVP) solvable with available commands in different softwares. Then, an algorithm is developed to find the maximum payload and corresponding optimal path on the basis of the solution of TPBVP. One advantage of the proposed method is obtaining the maximum payload trajectory for every considered objective function. It means that other objectives can be achieved in addition to maximize the payload. For the sake of comparison with previous results in the literature, simulation tests are performed for a two-link wheeled mobile manipulator. The reasonable agreement is observed between the results, and the superiority of the method is illustrated. Then, simulations are performed for a PUMA arm mounted on a linear tracked base and the results are discussed. Finally, the effect of final time on the maximum payload is investigated, and it is shown that the approach presented is also able to solve the time-optimal control problem successfully.


1998 ◽  
Vol 31 (3) ◽  
pp. 619-625
Author(s):  
Bernt Nilsson ◽  
Jonas Nygårds ◽  
Ulf Larsson ◽  
Åke Wernersson

2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Stephen L. Canfield ◽  
Reabetswe M. Nkhumise

This paper develops an approach to evaluate a state-space controller design for mobile manipulators using a geometric representation of the system response in tool space. The method evaluates the robot system dynamics with a control scheme and the resulting response is called the controllability ellipsoid (CE), a tool space representation of the system’s motion response given a unit input. The CE can be compared with a corresponding geometric representation of the required motion task (called the motion polyhedron) and evaluated using a quantitative measure of the degree to which the task is satisfied. The traditional control design approach views the system response in the time domain. Alternatively, the proposed CE views the system response in the domain of the input variables. In order to complete the task, the CE must fully contain the motion polyhedron. The optimal robot arrangement would minimize the total area of the CE while fully containing the motion polyhedron. This is comparable to minimizing the power requirements of robot design when applying a uniform scale to all inputs. It will be shown that changing the control parameters changes the eccentricity and orientation of the CE, implying a preferred set of control parameters to minimize the design motor power. When viewed in the time domain, the control parameters can be selected to achieve desired stability and time response. When coupled with existing control design methods, the CE approach can yield robot designs that are stable, responsive, and minimize the input power requirements.


Author(s):  
Michael John Chua ◽  
Yen-Chen Liu

Abstract This paper presents cooperation and null-space control for networked mobile manipulators with high degrees of freedom (DOFs). First, kinematic model and Euler-Lagrange dynamic model of the mobile manipulator, which has an articulated robot arm mounted on a mobile base with omni-directional wheels, have been presented. Then, the dynamic decoupling has been considered so that the task-space and the null-space can be controlled separately to accomplish different missions. The motion of the end-effector is controlled in the task-space, and the force control is implemented to make sure the cooperation of the mobile manipulators, as well as the transportation tasks. Also, the null-space control for the manipulator has been combined into the decoupling control. For the mobile base, it is controlled in the null-space to track the velocity of the end-effector, avoid other agents, avoid the obstacles, and move in a defined range based on the length of the manipulator without affecting the main task. Numerical simulations have been addressed to demonstrate the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document