Walking balance control for biped robot based on multi-sensor integration

Author(s):  
Bin He ◽  
Zhipeng Wang ◽  
Xiaocheng Tang ◽  
Qiang Lu
Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A novel theoretical framework for the identification of the balance stability regions of biped systems is implemented on a real robotic platform. With the proposed method, the balance stability capabilities of a biped robot are quantified by a balance stability region in the state space of center of mass (COM) position and velocity. The boundary of such a stability region provides a threshold between balanced and falling states for the robot by including all possible COM states that are balanced with respect to a specified feet/ground contact configuration. A COM state outside of the stability region boundary is the sufficient condition for a falling state, from which a change in the specified contact configuration is inevitable. By specifying various positions of the robot’s feet on the ground, the effects of different contact configurations on the robot’s balance stability capabilities are investigated. Experimental walking trajectories of the robot are analyzed in relationship with their respective stability boundaries, to study the robot balance control during various gait phases.


Author(s):  
Yeoun-Jae Kim ◽  
Joon-Yong Lee ◽  
Ju-Jang Lee

Purpose – This paper aims to present a step-exchange strategy for balance control of a walking biped robot when a lateral impact acts suddenly. A step-out strategy has been recently proposed for balance control when an unknown lateral force acts to a biped robot during walking. This step-out strategy causes a robot to absorb the impact kinetic energy and efficiently maintain balance without falling down. Nevertheless, it was found that the previous strategies have drawbacks that the two foots should always be on the ground (double-support mode) after being balanced and the authors think it is difficult to continue walking after being balanced. Unlike the existing balance strategies, the proposed step-exchange strategy is to not only maintain balance but also to lift one leg in the air (single-support mode) after being balanced so that it is easy for a biped robot to keep walking after being balanced. Design/methodology/approach – In the proposed step-exchange strategy, forward Newton–Euler equation, angular momentum and energy conservation equation were derived. Hill-climbing algorithm is utilized for numerically finding a solution. To verify the proposed strategy, a biped robot by Open Dynamics Engine was stimulated, and experiments with a real biped robot (LRH-1) were also conducted. Findings – The proposed step-exchange strategy enables a walking biped robot under a lateral impact to keep balance and to keep a single-support mode after exchanging a leg. It is helpful for a biped robot to continue walking without any stop. It is found that the proposed step-exchange strategy can be applicable for maintaining balance even if a biped robot is moving. Even though this proposal seems immature yet, it is the first attempt to exchange the supporting foot itself. This strategy is very straightforward and intuitive because humans are also likely to exchange their supporting foot onto the opposite side when an unexpected force is acting. Research limitations/implications – The proposed step-exchange strategy described in this paper can be applicable in the situation when the external force is applied in the +Y direction, the left leg is the swing leg and the right leg is the stance leg, or it can also be applicable in the situation when the external force is applied in −Y direction, the right leg is the swing leg and the left leg is the stance leg (Figure 2 for ±Y force direction). If an impact force acts to the side of the swing leg, the other step-exchange strategy is needed. The authors are studying this issue as a future work. Originality/value – The authors have originated the proposed step-exchange strategy for balance control of a walking biped robot under lateral impact. The strategy is genuine and superior in comparison with the state-of-the-art strategy because not only can a biped robot be balanced but it can also easily continue walking by using the step-exchange strategy.


Robotica ◽  
2014 ◽  
Vol 34 (7) ◽  
pp. 1495-1516
Author(s):  
Yeoun-Jae Kim ◽  
Joon-Yong Lee ◽  
Ju-Jang Lee

SUMMARYIn this paper, we propose and examine a force-resisting balance control strategy for a walking biped robot under the application of a sudden unknown, continuous force. We assume that the external force is acting on the pelvis of a walking biped robot and that the external force in the z-direction is negligible compared to the external forces in the x- and y-directions. The main control strategy involves moving the zero moment point (ZMP) of the walking robot to the center of the robot's sole resisting the externally applied force. This strategy is divided into three steps. The first step is to detect an abnormal situation in which an unknown continuous force is applied by examining the position of the ZMP. The second step is to move the ZMP of the robot to the center of the sole resisting the external force. The third step is to have the biped robot convert from single support phase (SSP) to double support phase (DSP) for an increased force-resisting capability. Computer simulations and experiments of the proposed methods are performed to benchmark the suggested control strategy.


Author(s):  
Mochamad Ayuf Basthomi ◽  
Ali Husein Alasiry ◽  
Anhar Risnumawan ◽  
Ardik Wijayanto ◽  
Miftahul Anwar ◽  
...  

Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 81-96 ◽  
Author(s):  
Lin Yang ◽  
Chee-Meng Chew ◽  
Yu Zheng ◽  
Aun-Neow Poo

SUMMARYThis paper studies the parameters contained in the truncated Fourier series (TFS) formulation for bipedal walking balance control. Using the TFS generated lateral motion reference, 3D bipedal walking can be directly achieved without any parameter adjustment. Furthermore, the potential of this TFS formulation for motion balance control has also been investigated. One more motion balance strategy is developed through the reinforcement learning, which adjusts the motion's reference trajectory according to the selected dynamic feedback in real time. Dynamic simulation results of the presented balance control method show that the resulting motion can be constrained periodical and long-distance 3D bipedal walking motions are achievable.


Mechatronics ◽  
2018 ◽  
Vol 49 ◽  
pp. 56-66 ◽  
Author(s):  
Satoshi Ito ◽  
Shingo Nishio ◽  
Masaaki Ino ◽  
Ryosuke Morita ◽  
Kojiro Matsushita ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (6) ◽  
pp. e1008369
Author(s):  
Maarten Afschrift ◽  
Friedl De Groote ◽  
Ilse Jonkers

Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.


Sign in / Sign up

Export Citation Format

Share Document