Adaptive immersion and invariance sliding mode control for hypersonic vehicles with parametric uncertainty

Author(s):  
Chao Han ◽  
Zhen Liu ◽  
Xiangmin Tan ◽  
Jianqiang Yi
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shuo Wang ◽  
Ju Jiang ◽  
Chaojun Yu

In this paper, a controller combining backstepping and adaptive supertwisting sliding mode control method is proposed for altitude and velocity tracking control of air-breathing hypersonic vehicles (AHVs). Firstly, the nonlinear longitudinal model of AHV is introduced and transformed into a strict feedback form, to which the backstepping method can be applied. Considering the longitudinal trajectory tracking control problem (altitude control and velocity control), the altitude tracking control system is decomposed to several one-order subsystems based on the backstepping method, and an adaptive supertwisting sliding mode controller is designed for each subsystem, in order to obtain the virtual control variables and actual control input. Secondly, the overall stability of the closed-loop system is proved by the Lyapunov stability theory. At last, the simulation is carried out on an AHV model. The results show that the proposed controller has good control performances and good robustness in the parameter perturbation case.


Sign in / Sign up

Export Citation Format

Share Document