Deep learning-based human head detection and extraction for robotic portrait drawing

Author(s):  
Xiaofeng Ye ◽  
Ye Gu ◽  
Weihua Sheng ◽  
Fei Wang ◽  
Hu Chen ◽  
...  
2021 ◽  
Vol 11 (12) ◽  
pp. 5503
Author(s):  
Munkhjargal Gochoo ◽  
Syeda Amna Rizwan ◽  
Yazeed Yasin Ghadi ◽  
Ahmad Jalal ◽  
Kibum Kim

Automatic head tracking and counting using depth imagery has various practical applications in security, logistics, queue management, space utilization and visitor counting. However, no currently available system can clearly distinguish between a human head and other objects in order to track and count people accurately. For this reason, we propose a novel system that can track people by monitoring their heads and shoulders in complex environments and also count the number of people entering and exiting the scene. Our system is split into six phases; at first, preprocessing is done by converting videos of a scene into frames and removing the background from the video frames. Second, heads are detected using Hough Circular Gradient Transform, and shoulders are detected by HOG based symmetry methods. Third, three robust features, namely, fused joint HOG-LBP, Energy based Point clouds and Fused intra-inter trajectories are extracted. Fourth, the Apriori-Association is implemented to select the best features. Fifth, deep learning is used for accurate people tracking. Finally, heads are counted using Cross-line judgment. The system was tested on three benchmark datasets: the PCDS dataset, the MICC people counting dataset and the GOTPD dataset and counting accuracy of 98.40%, 98%, and 99% respectively was achieved. Our system obtained remarkable results.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1565
Author(s):  
Junwen Liu ◽  
Yongjun Zhang ◽  
Jianbin Xie ◽  
Yan Wei ◽  
Zewei Wang ◽  
...  

Pedestrian detection for complex scenes suffers from pedestrian occlusion issues, such as occlusions between pedestrians. As well-known, compared with the variability of the human body, the shape of a human head and their shoulders changes minimally and has high stability. Therefore, head detection is an important research area in the field of pedestrian detection. The translational invariance of neural network enables us to design a deep convolutional neural network, which means that, even if the appearance and location of the target changes, it can still be recognized effectively. However, the problems of scale invariance and high miss detection rates for small targets still exist. In this paper, a feature extraction network DR-Net based on Darknet-53 is proposed to improve the information transmission rate between convolutional layers and to extract more semantic information. In addition, the MDC (mixed dilated convolution) with different sampling rates of dilated convolution is embedded to improve the detection rate of small targets. We evaluated our method on three publicly available datasets and achieved excellent results. The AP (Average Precision) value on the Brainwash dataset, HollywoodHeads dataset, and SCUT-HEAD dataset reached 92.1%, 84.8%, and 90% respectively.


Author(s):  
Padmapriya Thiyagarajan ◽  
Sriramakrishnan Padmanaban ◽  
Kalaiselvi Thiruvenkadam ◽  
Somasundaram Karuppanagounder

Background: Among the brain-related diseases, brain tumor segmentation on magnetic resonance imaging (MRI) scans is one of the highly focused research domains in the medical community. Brain tumor segmentation is a very challenging task due to its asymmetric form and uncertain boundaries. This process segregates the tumor region into the active tumor, necrosis and edema from normal brain tissues such as white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). Introduction: The proposed paper analyzed the advancement of brain tumor segmentation from conventional image processing techniques, to deep learning through machine learning on MRI of human head scans. Method: State-of-the-art methods of these three techniques are investigated, and the merits and demerits are discussed. Results: The prime motivation of the paper is to instigate the young researchers towards the development of efficient brain tumor segmentation techniques using conventional and recent technologies. Conclusion: The proposed analysis concluded that the conventional and machine learning methods were mostly applied for brain tumor detection, whereas deep learning methods were good at tumor substructures segmentation.


2013 ◽  
Vol 427-429 ◽  
pp. 1696-1699
Author(s):  
Xiang Yang Liu ◽  
Shao Song Zhu ◽  
Su Qing Wu ◽  
Zhi Wei Shen

For human head pose analysis based on videos, pose is usually estimated on the head patch provided by a tracking module. However, head tracking is very sensitive to the large changes of pose. Therefore, this work locates the head patch in the videos by head detection. Firstly, we use the Adaboost algorithm to detect the human head in the video. Secondly, we present a dimensionality reduction method to process the head patch. Finally, we use the nearest neighbor method to estimate the head pose. The experiment results show: accurate head detecting helps to estimate the head pose. This method can be used for complex conditions of accurate head pose estimation.


NeuroImage ◽  
2019 ◽  
Vol 202 ◽  
pp. 116132 ◽  
Author(s):  
Essam A. Rashed ◽  
Jose Gomez-Tames ◽  
Akimasa Hirata
Keyword(s):  

2020 ◽  
Vol 10 (16) ◽  
pp. 5531
Author(s):  
Dong-seok Lee ◽  
Jong-soo Kim ◽  
Seok Chan Jeong ◽  
Soon-kak Kwon

In this study, an estimation method for human height is proposed using color and depth information. Color images are used for deep learning by mask R-CNN to detect a human body and a human head separately. If color images are not available for extracting the human body region due to low light environment, then the human body region is extracted by comparing between current frame in depth video and a pre-stored background depth image. The topmost point of the human head region is extracted as the top of the head and the bottommost point of the human body region as the bottom of the foot. The depth value of the head top-point is corrected to a pixel value that has high similarity to a neighboring pixel. The position of the body bottom-point is corrected by calculating a depth gradient between vertically adjacent pixels. Two head-top and foot-bottom points are converted into 3D real-world coordinates using depth information. Two real-world coordinates estimate human height by measuring a Euclidean distance. Estimation errors for human height are corrected as the average of accumulated heights. In experiment results, we achieve that the estimated errors of human height with a standing state are 0.7% and 2.2% when the human body region is extracted by mask R-CNN and the background depth image, respectively.


Sign in / Sign up

Export Citation Format

Share Document