scholarly journals Human Height Estimation by Color Deep Learning and Depth 3D Conversion

2020 ◽  
Vol 10 (16) ◽  
pp. 5531
Author(s):  
Dong-seok Lee ◽  
Jong-soo Kim ◽  
Seok Chan Jeong ◽  
Soon-kak Kwon

In this study, an estimation method for human height is proposed using color and depth information. Color images are used for deep learning by mask R-CNN to detect a human body and a human head separately. If color images are not available for extracting the human body region due to low light environment, then the human body region is extracted by comparing between current frame in depth video and a pre-stored background depth image. The topmost point of the human head region is extracted as the top of the head and the bottommost point of the human body region as the bottom of the foot. The depth value of the head top-point is corrected to a pixel value that has high similarity to a neighboring pixel. The position of the body bottom-point is corrected by calculating a depth gradient between vertically adjacent pixels. Two head-top and foot-bottom points are converted into 3D real-world coordinates using depth information. Two real-world coordinates estimate human height by measuring a Euclidean distance. Estimation errors for human height are corrected as the average of accumulated heights. In experiment results, we achieve that the estimated errors of human height with a standing state are 0.7% and 2.2% when the human body region is extracted by mask R-CNN and the background depth image, respectively.

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 393 ◽  
Author(s):  
Jonha Lee ◽  
Dong-Wook Kim ◽  
Chee Won ◽  
Seung-Won Jung

Segmentation of human bodies in images is useful for a variety of applications, including background substitution, human activity recognition, security, and video surveillance applications. However, human body segmentation has been a challenging problem, due to the complicated shape and motion of a non-rigid human body. Meanwhile, depth sensors with advanced pattern recognition algorithms provide human body skeletons in real time with reasonable accuracy. In this study, we propose an algorithm that projects the human body skeleton from a depth image to a color image, where the human body region is segmented in the color image by using the projected skeleton as a segmentation cue. Experimental results using the Kinect sensor demonstrate that the proposed method provides high quality segmentation results and outperforms the conventional methods.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2353
Author(s):  
Xinyan Sun ◽  
Zhenye Li ◽  
Tingting Zhu ◽  
Chao Ni

Grading the quality of fresh cut flowers is an important practice in the flower industry. Based on the flower maturing status, a classification method based on deep learning and depth information was proposed for the grading of flower quality. Firstly, the RGB image and the depth image of a flower bud were collected and transformed into fused RGBD information. Then, the RGBD information of a flower was set as inputs of a convolutional neural network to determine the flower bud maturing status. Four convolutional neural network models (VGG16, ResNet18, MobileNetV2, and InceptionV3) were adjusted for a four-dimensional (4D) RGBD input to classify flowers, and their classification performances were compared with and without depth information. The experimental results show that the classification accuracy was improved with depth information, and the improved InceptionV3 network with RGBD achieved the highest classification accuracy (up to 98%), which means that the depth information can effectively reflect the characteristics of the flower bud and is helpful for the classification of the maturing status. These results have a certain significance for the intelligent classification and sorting of fresh flowers.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 812 ◽  
Author(s):  
Hanbing Deng ◽  
Tongyu Xu ◽  
Yuncheng Zhou ◽  
Teng Miao

Image segmentation is one of the most important methods for animal phenome research. Since the advent of deep learning, many researchers have looked at multilayer convolutional neural networks to solve the problems of image segmentation. A network simplifies the task of image segmentation with automatic feature extraction. Many networks struggle to output accurate details when dealing with pixel-level segmentation. In this paper, we propose a new concept: Depth density. Based on a depth image, produced by a Kinect system, we design a new function to calculate the depth density value of each pixel and bring this value back to the result of semantic segmentation for improving the accuracy. In the experiment, we choose Simmental cattle as the target of image segmentation and fully convolutional networks (FCN) as the verification networks. We proved that depth density can improve four metrics of semantic segmentation (pixel accuracy, mean accuracy, mean intersection over union, and frequency weight intersection over union) by 2.9%, 0.3%, 11.4%, and 5.02%, respectively. The result shows that depth information produced by Kinect can improve the accuracy of the semantic segmentation of FCN. This provides a new way of analyzing the phenotype information of animals.


2021 ◽  
Author(s):  
Markus Miller ◽  
Alfred Nischwitz ◽  
Rüdiger Westermann

In augmented reality applications, consistent illumination between virtual and real objects is important for creating an immersive user experience. Consistent illumination can be achieved by appropriate parameterisation of the virtual illumination model, that is consistent with real-world lighting conditions. In this study, we developed a method to reconstruct the general light direction from red-green-blue (RGB) images of real-world scenes using a modified VGG-16 neural network. We reconstructed the general light direction as azimuth and elevation angles. To avoid inaccurate results caused by coordinate uncertainty occurring at steep elevation angles, we further introduced stereographically projected coordinates. Unlike recent deep-learning-based approaches for reconstructing the light source direction, our approach does not require depth information and thus does not rely on special red-green-blue- depth (RGB-D) images as input.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1549
Author(s):  
Robert D. Chambers ◽  
Nathanael C. Yoder ◽  
Aletha B. Carson ◽  
Christian Junge ◽  
David E. Allen ◽  
...  

Collar-mounted canine activity monitors can use accelerometer data to estimate dog activity levels, step counts, and distance traveled. With recent advances in machine learning and embedded computing, much more nuanced and accurate behavior classification has become possible, giving these affordable consumer devices the potential to improve the efficiency and effectiveness of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at sub-second resolution using commercial pet activity monitors. We built machine learning training databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production on more than 11 million days of device data. We then surveyed project participants representing 10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drinking behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870, 0.997), and sniffing (0.610, 0.968). We show that the devices’ position on the collar had no measurable impact on performance. In production, users reported a true positive rate of 95.3% for eating (among 1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate detection of important health-related canine behaviors using a collar-mounted accelerometer. We trained and validated our algorithms on a large and realistic training dataset, and we assessed and confirmed accuracy in production via user validation.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1356
Author(s):  
Linda Christin Büker ◽  
Finnja Zuber ◽  
Andreas Hein ◽  
Sebastian Fudickar

With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and texture invariance. Correspondingly, we introduce High- Resolution Depth Net (HRDepthNet)—a machine learning driven approach to detect human joints (body, head, and upper and lower extremities) in purely depth images. HRDepthNet retrains the original HRNet for depth images. Therefore, a dataset is created holding depth (and RGB) images recorded with subjects conducting the timed up and go test—an established geriatric assessment. The images were manually annotated RGB images. The training and evaluation were conducted with this dataset. For accuracy evaluation, detection of body joints was evaluated via COCO’s evaluation metrics and indicated that the resulting depth image-based model achieved better results than the HRNet trained and applied on corresponding RGB images. An additional evaluation of the position errors showed a median deviation of 1.619 cm (x-axis), 2.342 cm (y-axis) and 2.4 cm (z-axis).


2021 ◽  
Vol 11 (12) ◽  
pp. 5503
Author(s):  
Munkhjargal Gochoo ◽  
Syeda Amna Rizwan ◽  
Yazeed Yasin Ghadi ◽  
Ahmad Jalal ◽  
Kibum Kim

Automatic head tracking and counting using depth imagery has various practical applications in security, logistics, queue management, space utilization and visitor counting. However, no currently available system can clearly distinguish between a human head and other objects in order to track and count people accurately. For this reason, we propose a novel system that can track people by monitoring their heads and shoulders in complex environments and also count the number of people entering and exiting the scene. Our system is split into six phases; at first, preprocessing is done by converting videos of a scene into frames and removing the background from the video frames. Second, heads are detected using Hough Circular Gradient Transform, and shoulders are detected by HOG based symmetry methods. Third, three robust features, namely, fused joint HOG-LBP, Energy based Point clouds and Fused intra-inter trajectories are extracted. Fourth, the Apriori-Association is implemented to select the best features. Fifth, deep learning is used for accurate people tracking. Finally, heads are counted using Cross-line judgment. The system was tested on three benchmark datasets: the PCDS dataset, the MICC people counting dataset and the GOTPD dataset and counting accuracy of 98.40%, 98%, and 99% respectively was achieved. Our system obtained remarkable results.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


Sign in / Sign up

Export Citation Format

Share Document